Wentao Xia , Jiasai Shu , Chunjiang Sang , Kang Wang , Yan Wang , Tingting Sun , Xiaojun Xu
{"title":"The prediction of RNA-small-molecule ligand binding affinity based on geometric deep learning","authors":"Wentao Xia , Jiasai Shu , Chunjiang Sang , Kang Wang , Yan Wang , Tingting Sun , Xiaojun Xu","doi":"10.1016/j.compbiolchem.2025.108367","DOIUrl":null,"url":null,"abstract":"<div><div>Small molecule-targeted RNA is an emerging technology that plays a pivotal role in drug discovery and inhibitor design, with widespread applications in disease treatment. Consequently, predicting RNA-small-molecule ligand interactions is crucial. With advancements in computer science and the availability of extensive biological data, deep learning methods have shown great promise in this area, particularly in efficiently predicting RNA-small molecule binding sites. However, few computational methods have been developed to predict RNA-small molecule binding affinities. Meanwhile, most of these approaches rely primarily on sequence or structural representations. Molecular surface information, vital for RNA and small molecule interactions, has been largely overlooked. To address these gaps, we propose a geometric deep learning method for predicting RNA-small molecule binding affinity, named RNA-ligand Surface Interaction Fingerprinting (RLASIF). In this study, we create RNA-ligand interaction fingerprints from the geometrical and chemical features present on molecular surface to characterize binding affinity. RLASIF outperformed other computational methods across ten different test sets from PDBbind NL2020. Compared to the second-best method, our approach improves performance by 10.01 %, 6.67 %, 2.01 % and 1.70 % on four evaluation metrics, indicating its effectiveness in capturing key features influencing RNA-ligand binding strength. Additionally, RLASIF holds potential for virtual screening of potential ligands for RNA and predicting small molecule binding nucleotides within RNA structures.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108367"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000271","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Small molecule-targeted RNA is an emerging technology that plays a pivotal role in drug discovery and inhibitor design, with widespread applications in disease treatment. Consequently, predicting RNA-small-molecule ligand interactions is crucial. With advancements in computer science and the availability of extensive biological data, deep learning methods have shown great promise in this area, particularly in efficiently predicting RNA-small molecule binding sites. However, few computational methods have been developed to predict RNA-small molecule binding affinities. Meanwhile, most of these approaches rely primarily on sequence or structural representations. Molecular surface information, vital for RNA and small molecule interactions, has been largely overlooked. To address these gaps, we propose a geometric deep learning method for predicting RNA-small molecule binding affinity, named RNA-ligand Surface Interaction Fingerprinting (RLASIF). In this study, we create RNA-ligand interaction fingerprints from the geometrical and chemical features present on molecular surface to characterize binding affinity. RLASIF outperformed other computational methods across ten different test sets from PDBbind NL2020. Compared to the second-best method, our approach improves performance by 10.01 %, 6.67 %, 2.01 % and 1.70 % on four evaluation metrics, indicating its effectiveness in capturing key features influencing RNA-ligand binding strength. Additionally, RLASIF holds potential for virtual screening of potential ligands for RNA and predicting small molecule binding nucleotides within RNA structures.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.