{"title":"Non-local orthotropic damage-plastic model for 3D printed materials","authors":"Denis Linardi, Elisabetta Monaldo, Sonia Marfia","doi":"10.1016/j.ijsolstr.2024.113210","DOIUrl":null,"url":null,"abstract":"<div><div>A non-local orthotropic damage and plasticity phenomenological model for 3D printed materials is presented. The model specifically refers to 3D printed structural elements realized with an extrusion-based technique and made with thermoplastic materials.</div><div>The structural behavior of the 3D printed component is described with a laminate finite element model based on the first-order shear deformation theory. Each layer of the laminate is described with a non-local orthotropic damage and plastic model. Indeed, the overall mechanical response of 3D printed materials is significantly influenced by plasticity and damage mechanisms that can lead to a range of failure modes from brittle-like to ductile. The proposed orthotropic damage model is based on the introduction of three different damage parameters. Each of them describes a specific damage mechanism, i.e. fiber breakage, fiber detachment and delamination, that is clearly visible from the analysis of the 3D printed samples subjected to experimental tests. Some applications are carried out and the numerical results are compared with experimental results available in literature, highlighting the effectiveness of the proposed modeling technique.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"310 ","pages":"Article 113210"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324005699","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
A non-local orthotropic damage and plasticity phenomenological model for 3D printed materials is presented. The model specifically refers to 3D printed structural elements realized with an extrusion-based technique and made with thermoplastic materials.
The structural behavior of the 3D printed component is described with a laminate finite element model based on the first-order shear deformation theory. Each layer of the laminate is described with a non-local orthotropic damage and plastic model. Indeed, the overall mechanical response of 3D printed materials is significantly influenced by plasticity and damage mechanisms that can lead to a range of failure modes from brittle-like to ductile. The proposed orthotropic damage model is based on the introduction of three different damage parameters. Each of them describes a specific damage mechanism, i.e. fiber breakage, fiber detachment and delamination, that is clearly visible from the analysis of the 3D printed samples subjected to experimental tests. Some applications are carried out and the numerical results are compared with experimental results available in literature, highlighting the effectiveness of the proposed modeling technique.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.