Enhancing Feedback Quality at Scale: Leveraging Machine Learning for Learner-Centered Feedback

Ahmad Ari Aldino , Yi-Shan Tsai , Rafael Ferreira Mello , Dragan Gašević , Guanliang Chen
{"title":"Enhancing Feedback Quality at Scale: Leveraging Machine Learning for Learner-Centered Feedback","authors":"Ahmad Ari Aldino ,&nbsp;Yi-Shan Tsai ,&nbsp;Rafael Ferreira Mello ,&nbsp;Dragan Gašević ,&nbsp;Guanliang Chen","doi":"10.1016/j.caeai.2024.100332","DOIUrl":null,"url":null,"abstract":"<div><div>In higher education, delivering effective feedback is pivotal for enhancing student learning but remains challenging due to the scale and diversity of student populations. Learner-centered feedback, a robust approach to effective feedback that tailors to individual student needs, encompasses three key dimensions—<span>Future Impact</span>, <span>Sensemaking</span>, and <span>Agency</span>, which collectively include eight specific components, thereby enhancing its relevance and impact in the learning process. However, providing consistent and effective learner-centered feedback at scale is challenging for educators. This study addresses this challenge by automating the analysis of feedback content to promote effective learner-centered feedback principles. We gathered a large-scale dataset of 16,531 feedback entries from 95 courses from one Master's and one Bachelor's program within a large faculty at an Australian university, with each entry labeled in accordance with the learner-centered feedback framework. Employing a range of machine learning and deep learning techniques, including Random Forest, XGBoost, BERT, and GPT-3.5, we systematically investigated the effectiveness of different approaches for constructing classifiers to accurately categorize feedback into various learner-centered components. The results demonstrated that the BERT-based classifiers outperformed other models in most feedback categories (achieving Cohen's <em>κ</em> up to 0.956 and F1 score up to 0.998), but showed relatively low performance in categories with less training data. This automated analysis aids in scrutinizing feedback quality, thereby supporting educators in enhancing their feedback practices to be more aligned with learner-centered principles.</div></div>","PeriodicalId":34469,"journal":{"name":"Computers and Education Artificial Intelligence","volume":"7 ","pages":"Article 100332"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Education Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666920X24001358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In higher education, delivering effective feedback is pivotal for enhancing student learning but remains challenging due to the scale and diversity of student populations. Learner-centered feedback, a robust approach to effective feedback that tailors to individual student needs, encompasses three key dimensions—Future Impact, Sensemaking, and Agency, which collectively include eight specific components, thereby enhancing its relevance and impact in the learning process. However, providing consistent and effective learner-centered feedback at scale is challenging for educators. This study addresses this challenge by automating the analysis of feedback content to promote effective learner-centered feedback principles. We gathered a large-scale dataset of 16,531 feedback entries from 95 courses from one Master's and one Bachelor's program within a large faculty at an Australian university, with each entry labeled in accordance with the learner-centered feedback framework. Employing a range of machine learning and deep learning techniques, including Random Forest, XGBoost, BERT, and GPT-3.5, we systematically investigated the effectiveness of different approaches for constructing classifiers to accurately categorize feedback into various learner-centered components. The results demonstrated that the BERT-based classifiers outperformed other models in most feedback categories (achieving Cohen's κ up to 0.956 and F1 score up to 0.998), but showed relatively low performance in categories with less training data. This automated analysis aids in scrutinizing feedback quality, thereby supporting educators in enhancing their feedback practices to be more aligned with learner-centered principles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.80
自引率
0.00%
发文量
66
审稿时长
50 days
期刊最新文献
Enhancing data analysis and programming skills through structured prompt training: The impact of generative AI in engineering education Understanding the practices, perceptions, and (dis)trust of generative AI among instructors: A mixed-methods study in the U.S. higher education Technological self-efficacy and sense of coherence: Key drivers in teachers' AI acceptance and adoption The influence of AI literacy on complex problem-solving skills through systematic thinking skills and intuition thinking skills: An empirical study in Thai gen Z accounting students Psychometrics of an Elo-based large-scale online learning system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1