Efficient fault detection and categorization in electrical distribution systems using hessian locally linear embedding on measurement data

K. Victor Sam Moses Babu , Sidharthenee Nayak , Divyanshi Dwivedi , Pratyush Chakraborty , Chandrashekhar Narayan Bhende , Pradeep Kumar Yemula , Mayukha Pal
{"title":"Efficient fault detection and categorization in electrical distribution systems using hessian locally linear embedding on measurement data","authors":"K. Victor Sam Moses Babu ,&nbsp;Sidharthenee Nayak ,&nbsp;Divyanshi Dwivedi ,&nbsp;Pratyush Chakraborty ,&nbsp;Chandrashekhar Narayan Bhende ,&nbsp;Pradeep Kumar Yemula ,&nbsp;Mayukha Pal","doi":"10.1016/j.meaene.2025.100035","DOIUrl":null,"url":null,"abstract":"<div><div>Faults on electrical power lines could severely compromise both the reliability and safety of power systems, leading to unstable power delivery and increased outage risks. They pose significant safety hazards, necessitating swift detection and mitigation to maintain electrical infrastructure integrity and ensure continuous power supply. Hence, accurate detection and categorization of electrical faults are pivotal for optimized power system maintenance and operation. In this work, we propose a novel approach for detecting and categorizing electrical faults using the Hessian locally linear embedding (HLLE) technique and subsequent clustering with t-SNE (t-distributed stochastic neighbor embedding) and Gaussian mixture model (GMM). First, we employ HLLE to transform high-dimensional (HD) electrical data into low-dimensional (LD) embedding coordinates. This technique effectively captures the inherent variations and patterns in the data, enabling robust feature extraction. Next, we perform the Mann–Whitney U test based on the feature space of the embedding coordinates for fault detection. This statistical approach allows us to detect electrical faults providing an efficient means of system monitoring and control. Furthermore, to enhance fault categorization, we employ t-SNE with GMM to cluster the detected faults into various categories. To evaluate the performance of the proposed method, we conduct extensive simulations on an electrical system integrated with solar farm. Our results demonstrate that the proposed approach exhibits effective fault detection and clustering across a range of fault types with different variations of the same fault. Overall, this research presents an effective methodology for robust fault detection and categorization in electrical systems, contributing to the advancement of fault management practices and the prevention of system failures.</div></div>","PeriodicalId":100897,"journal":{"name":"Measurement: Energy","volume":"5 ","pages":"Article 100035"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950345025000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Faults on electrical power lines could severely compromise both the reliability and safety of power systems, leading to unstable power delivery and increased outage risks. They pose significant safety hazards, necessitating swift detection and mitigation to maintain electrical infrastructure integrity and ensure continuous power supply. Hence, accurate detection and categorization of electrical faults are pivotal for optimized power system maintenance and operation. In this work, we propose a novel approach for detecting and categorizing electrical faults using the Hessian locally linear embedding (HLLE) technique and subsequent clustering with t-SNE (t-distributed stochastic neighbor embedding) and Gaussian mixture model (GMM). First, we employ HLLE to transform high-dimensional (HD) electrical data into low-dimensional (LD) embedding coordinates. This technique effectively captures the inherent variations and patterns in the data, enabling robust feature extraction. Next, we perform the Mann–Whitney U test based on the feature space of the embedding coordinates for fault detection. This statistical approach allows us to detect electrical faults providing an efficient means of system monitoring and control. Furthermore, to enhance fault categorization, we employ t-SNE with GMM to cluster the detected faults into various categories. To evaluate the performance of the proposed method, we conduct extensive simulations on an electrical system integrated with solar farm. Our results demonstrate that the proposed approach exhibits effective fault detection and clustering across a range of fault types with different variations of the same fault. Overall, this research presents an effective methodology for robust fault detection and categorization in electrical systems, contributing to the advancement of fault management practices and the prevention of system failures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrical losses combat – Detecting theft spots in low voltage networks considering available data from the free energy market Control of regulated and unregulated emissions of an automotive spark ignition engine with alternative fuels (methanol, ethanol and hydrogen) Design and implementation of a solar powered kit for measurement and logging of environmental parameters using the SEN55 sensor Investigation of combustion-induced vibration sources in a diesel engine in the time-frequency domain using the wavelet analysis method and wavelet cross-correlation analysis method Performance evaluation and impedance spectroscopy of carbon-felt and reinforced stainless-steel mesh electrodes in terrestrial microbial fuel cells for biopower generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1