Performance evaluation and impedance spectroscopy of carbon-felt and reinforced stainless-steel mesh electrodes in terrestrial microbial fuel cells for biopower generation

Meshack Imologie Simeon , Amarachi C. Alaka , Peter Daniel , Olalekan David Adeniyi
{"title":"Performance evaluation and impedance spectroscopy of carbon-felt and reinforced stainless-steel mesh electrodes in terrestrial microbial fuel cells for biopower generation","authors":"Meshack Imologie Simeon ,&nbsp;Amarachi C. Alaka ,&nbsp;Peter Daniel ,&nbsp;Olalekan David Adeniyi","doi":"10.1016/j.meaene.2025.100036","DOIUrl":null,"url":null,"abstract":"<div><div>Terrestrial Microbial Fuel Cells (TMFCs) offer promising potential for renewable energy by harnessing microbial metabolism to generate electricity from soil-based organic matter. Electrode materials are key to TMFC performance, facilitating electron transfer between microbes and the circuit. However, the effect of electrode impedance on TMFC efficiency is not well understood. This study fills that gap by comparing surface-modified stainless-steel mesh (SMS) and carbon felt (CF) electrodes, focusing on performance metrics and impedance spectroscopy to optimize electrode design for improved power generation from TMFCs. The SMS electrode fabricated using the pasting and reinforcement process demonstrated superior performance with a maximum power of 859 μW compared to the 234 μW power of the CF electrode. This better performance of the SMS electrode was attributed to its pseudocapacitive behavior, enhancing internal charge storage capacity and overall MFC efficiency. Electrochemical impedance spectroscopy revealed a substantially higher charge transfer resistance in the CF electrode, resulting in a 190.8 % difference between the two electrodes. Conversely, the SMS electrode exhibited lower resistance and improved diffusion characteristics, facilitating efficient electron transfer and mass transport. These findings underscore the significance of tailored electrode materials in optimizing MFC performance and emphasize the utility of electrochemical impedance spectroscopy in elucidating complex electrochemical processes within MFC systems, thus guiding future advancements in sustainable power production in terrestrial MFCs.</div></div>","PeriodicalId":100897,"journal":{"name":"Measurement: Energy","volume":"5 ","pages":"Article 100036"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295034502500003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Terrestrial Microbial Fuel Cells (TMFCs) offer promising potential for renewable energy by harnessing microbial metabolism to generate electricity from soil-based organic matter. Electrode materials are key to TMFC performance, facilitating electron transfer between microbes and the circuit. However, the effect of electrode impedance on TMFC efficiency is not well understood. This study fills that gap by comparing surface-modified stainless-steel mesh (SMS) and carbon felt (CF) electrodes, focusing on performance metrics and impedance spectroscopy to optimize electrode design for improved power generation from TMFCs. The SMS electrode fabricated using the pasting and reinforcement process demonstrated superior performance with a maximum power of 859 μW compared to the 234 μW power of the CF electrode. This better performance of the SMS electrode was attributed to its pseudocapacitive behavior, enhancing internal charge storage capacity and overall MFC efficiency. Electrochemical impedance spectroscopy revealed a substantially higher charge transfer resistance in the CF electrode, resulting in a 190.8 % difference between the two electrodes. Conversely, the SMS electrode exhibited lower resistance and improved diffusion characteristics, facilitating efficient electron transfer and mass transport. These findings underscore the significance of tailored electrode materials in optimizing MFC performance and emphasize the utility of electrochemical impedance spectroscopy in elucidating complex electrochemical processes within MFC systems, thus guiding future advancements in sustainable power production in terrestrial MFCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrical losses combat – Detecting theft spots in low voltage networks considering available data from the free energy market Control of regulated and unregulated emissions of an automotive spark ignition engine with alternative fuels (methanol, ethanol and hydrogen) Design and implementation of a solar powered kit for measurement and logging of environmental parameters using the SEN55 sensor Investigation of combustion-induced vibration sources in a diesel engine in the time-frequency domain using the wavelet analysis method and wavelet cross-correlation analysis method Performance evaluation and impedance spectroscopy of carbon-felt and reinforced stainless-steel mesh electrodes in terrestrial microbial fuel cells for biopower generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1