Design of an IoT model for forecasting energy consumption of residential buildings based on improved long short-term memory (LSTM)

Mustafa Wassef Hasan
{"title":"Design of an IoT model for forecasting energy consumption of residential buildings based on improved long short-term memory (LSTM)","authors":"Mustafa Wassef Hasan","doi":"10.1016/j.meaene.2024.100033","DOIUrl":null,"url":null,"abstract":"<div><div>Long short-term memory (LSTM) networks are critical in predicting periodic time series data on energy consumption, as many other forecasting methods do not take into account periodicity. Despite the effective forecasting capabilities of LSTM networks in predicting periodic energy consumption data, they are hindered by the dead region effect, which is caused by the sigmoid and hyperbolic tangent activation functions. These functions control the flow of information and determine which data is suitable for updating and learning within specific boundaries, but they also create unused regions that impact the accuracy and efficiency of the learning process in LSTM networks. To address this issue, this study introduces an Internet of Things (IoT) energy consumption forecasting model based on an improved long short-term memory (ILSTM) approach. This model aims to overcome the dead region problem and enhance the accuracy and learning process of traditional LSTM networks. The study collected actual energy consumption data from a residential building using a CT (SCT-013-030) sensor and ESP8266 NodeMCU real model with the Thingspek cloud platform for data processing. Additionally, a storage data recycling (SDR) technique is utilized to address data clustering shortages and fill missing information. The ILSTM forecasting model was assessed using various evaluation metrics including mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). Additionally, comparisons were made between the throughput, latency, and bill information of the proposed ILSTM forecasting model and the ARIMA, DBN Regression, and conventional LSTM (CLSTM) forecasting models. The evaluation demonstrated that the ILSTM network outperformed the CLSTM network, showing improvements of 61.697% in MAE, 59.248% in MSE, and 50.537% in RMSE. Furthermore, the ILSTM network exhibited lower throughput values for varying energy consumption data compared to the CLSTM, and demonstrated reduced latency compared to ARIMA, DBN Regression, and CLSTM by 40.1, 21.1, and 13.5 cycles, respectively. Lastly, the results revealed that the ILSTM network provided more accurate energy consumption forecasting and bill estimation than the CLSTM.</div></div>","PeriodicalId":100897,"journal":{"name":"Measurement: Energy","volume":"5 ","pages":"Article 100033"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950345024000332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Long short-term memory (LSTM) networks are critical in predicting periodic time series data on energy consumption, as many other forecasting methods do not take into account periodicity. Despite the effective forecasting capabilities of LSTM networks in predicting periodic energy consumption data, they are hindered by the dead region effect, which is caused by the sigmoid and hyperbolic tangent activation functions. These functions control the flow of information and determine which data is suitable for updating and learning within specific boundaries, but they also create unused regions that impact the accuracy and efficiency of the learning process in LSTM networks. To address this issue, this study introduces an Internet of Things (IoT) energy consumption forecasting model based on an improved long short-term memory (ILSTM) approach. This model aims to overcome the dead region problem and enhance the accuracy and learning process of traditional LSTM networks. The study collected actual energy consumption data from a residential building using a CT (SCT-013-030) sensor and ESP8266 NodeMCU real model with the Thingspek cloud platform for data processing. Additionally, a storage data recycling (SDR) technique is utilized to address data clustering shortages and fill missing information. The ILSTM forecasting model was assessed using various evaluation metrics including mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). Additionally, comparisons were made between the throughput, latency, and bill information of the proposed ILSTM forecasting model and the ARIMA, DBN Regression, and conventional LSTM (CLSTM) forecasting models. The evaluation demonstrated that the ILSTM network outperformed the CLSTM network, showing improvements of 61.697% in MAE, 59.248% in MSE, and 50.537% in RMSE. Furthermore, the ILSTM network exhibited lower throughput values for varying energy consumption data compared to the CLSTM, and demonstrated reduced latency compared to ARIMA, DBN Regression, and CLSTM by 40.1, 21.1, and 13.5 cycles, respectively. Lastly, the results revealed that the ILSTM network provided more accurate energy consumption forecasting and bill estimation than the CLSTM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrical losses combat – Detecting theft spots in low voltage networks considering available data from the free energy market Control of regulated and unregulated emissions of an automotive spark ignition engine with alternative fuels (methanol, ethanol and hydrogen) Design and implementation of a solar powered kit for measurement and logging of environmental parameters using the SEN55 sensor Investigation of combustion-induced vibration sources in a diesel engine in the time-frequency domain using the wavelet analysis method and wavelet cross-correlation analysis method Performance evaluation and impedance spectroscopy of carbon-felt and reinforced stainless-steel mesh electrodes in terrestrial microbial fuel cells for biopower generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1