Power grid operation in distribution grids with convolutional neural networks

IF 5.4 Q2 ENERGY & FUELS Smart Energy Pub Date : 2025-02-01 DOI:10.1016/j.segy.2024.100169
Manuela Linke, Tobias Meßmer, Gabriel Micard, Gunnar Schubert
{"title":"Power grid operation in distribution grids with convolutional neural networks","authors":"Manuela Linke,&nbsp;Tobias Meßmer,&nbsp;Gabriel Micard,&nbsp;Gunnar Schubert","doi":"10.1016/j.segy.2024.100169","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient and reliable operation of power grids is of great importance for ensuring a stable and uninterrupted supply of electricity. Traditional grid operation techniques have faced challenges due to the increasing integration of renewable energy sources and fluctuating demand patterns caused by the electrification of the heat and mobility sector. This paper presents a novel application of convolutional neural networks in grid operation, utilising their capabilities to recognise fault patterns and finding solutions. Different input data arrangements were investigated to reflect the relationships between neighbouring nodes as imposed by the grid topology. As disturbances we consider voltage deviations exceeding 3% of the nominal voltage or transformer and line overloads. To counteract, we use tab position changes of the transformer stations as well as remote controllable switches installed in the grid. The algorithms are trained and tested on a virtual grid based on real measurement data. Our models show excellent results with test accuracy of up to 99.06% in detecting disturbances in the grid and suggest a suitable solution without performing time-consuming load flow calculations. The proposed approach holds significant potential to address the challenges associated with modern grid operation, paving the way for more efficient and sustainable energy systems.</div></div>","PeriodicalId":34738,"journal":{"name":"Smart Energy","volume":"17 ","pages":"Article 100169"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266695522400039X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient and reliable operation of power grids is of great importance for ensuring a stable and uninterrupted supply of electricity. Traditional grid operation techniques have faced challenges due to the increasing integration of renewable energy sources and fluctuating demand patterns caused by the electrification of the heat and mobility sector. This paper presents a novel application of convolutional neural networks in grid operation, utilising their capabilities to recognise fault patterns and finding solutions. Different input data arrangements were investigated to reflect the relationships between neighbouring nodes as imposed by the grid topology. As disturbances we consider voltage deviations exceeding 3% of the nominal voltage or transformer and line overloads. To counteract, we use tab position changes of the transformer stations as well as remote controllable switches installed in the grid. The algorithms are trained and tested on a virtual grid based on real measurement data. Our models show excellent results with test accuracy of up to 99.06% in detecting disturbances in the grid and suggest a suitable solution without performing time-consuming load flow calculations. The proposed approach holds significant potential to address the challenges associated with modern grid operation, paving the way for more efficient and sustainable energy systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Energy
Smart Energy Engineering-Mechanical Engineering
CiteScore
9.20
自引率
0.00%
发文量
29
审稿时长
73 days
期刊最新文献
Exploring the advantages of a multi-year-adaptive approach on cost-optimal long-term mini-grid design under different demand evolution scenarios Optimizing district heating operations: Network modeling and its implications on system efficiency and operation Optimizing storage capacity in 100 % renewable electricity supply: A GIS-based approach for Italy A data-based comparison of methods for reducing the peak flow rate in a district heating system Power grid operation in distribution grids with convolutional neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1