Observing simultaneous low temperature heat release and deflagration in a spark ignition engine using formaldehyde planar laser induced fluorescence

Samuel P. White, Christopher Willman, Felix C.P. Leach
{"title":"Observing simultaneous low temperature heat release and deflagration in a spark ignition engine using formaldehyde planar laser induced fluorescence","authors":"Samuel P. White,&nbsp;Christopher Willman,&nbsp;Felix C.P. Leach","doi":"10.1016/j.jaecs.2025.100321","DOIUrl":null,"url":null,"abstract":"<div><div>Low temperature heat release (LTHR) and its underlying chemistry is of particular interest for its potential to mitigate knock in spark ignition (SI) engines and enable advanced combustion strategies that rely on end gas autoignition. It has been proposed that, in SI engines, LTHR can occur volumetrically in the end gas, after ignition, whilst deflagration occurs elsewhere in the cylinder, however, current pressure-based heat release metering techniques are unable to distinguish such LTHR from high temperature heat release (HTHR) due to the overlapping pressure rise characteristics. Planar laser-induced fluorescence (PLIF) of formaldehyde, a known product of LTHR which is consumed during HTHR, offers an opportunity to detect end gas LTHR simultaneously with deflagration but is challenging to implement, as end gas is often located closer to cylinder walls and away from typical optically accessible locations. An optically accessible SI engine was used to show formaldehyde PLIF signal intensity under motored conditions is well correlated to cumulative LTHR intensity, using a recent method to isolate LTHR in SI engine conditions. An alternative ignition method using four side-mounted spark plugs was implemented to generate end gas close to the cylinder axis. This enabled measurement of LTHR within the end gas during the deflagration process of a SI engine, demonstrating the utility of formaldehyde PLIF to optically measure LTHR under conditions where pressure-based diagnostics cannot isolate the contribution of LTHR.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"21 ","pages":"Article 100321"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666352X25000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Low temperature heat release (LTHR) and its underlying chemistry is of particular interest for its potential to mitigate knock in spark ignition (SI) engines and enable advanced combustion strategies that rely on end gas autoignition. It has been proposed that, in SI engines, LTHR can occur volumetrically in the end gas, after ignition, whilst deflagration occurs elsewhere in the cylinder, however, current pressure-based heat release metering techniques are unable to distinguish such LTHR from high temperature heat release (HTHR) due to the overlapping pressure rise characteristics. Planar laser-induced fluorescence (PLIF) of formaldehyde, a known product of LTHR which is consumed during HTHR, offers an opportunity to detect end gas LTHR simultaneously with deflagration but is challenging to implement, as end gas is often located closer to cylinder walls and away from typical optically accessible locations. An optically accessible SI engine was used to show formaldehyde PLIF signal intensity under motored conditions is well correlated to cumulative LTHR intensity, using a recent method to isolate LTHR in SI engine conditions. An alternative ignition method using four side-mounted spark plugs was implemented to generate end gas close to the cylinder axis. This enabled measurement of LTHR within the end gas during the deflagration process of a SI engine, demonstrating the utility of formaldehyde PLIF to optically measure LTHR under conditions where pressure-based diagnostics cannot isolate the contribution of LTHR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
bio-FLASHCHAIN® theory for rapid devolatilization of biomass. 10. Validations for agricultural residues Influence of surface cooling on the deposition behavior of combusting Iron particles Observing simultaneous low temperature heat release and deflagration in a spark ignition engine using formaldehyde planar laser induced fluorescence Comprehensive reevaluation of acetaldehyde chemistry - part I: Assessment of important kinetic parameters and the underlying uncertainties Simultaneous 10 kHz PIV/OH-PLIF/chemiluminescence and conjoint data analysis approach for thermoacoustic oscillation near lean blowout
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1