Research of snow drifting on flat roofs with parapets by numerical simulations and wind tunnel tests

IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL Cold Regions Science and Technology Pub Date : 2024-12-17 DOI:10.1016/j.coldregions.2024.104403
Xuanyi Zhou , Yue Wu , Lingui Xin , Ming Gu
{"title":"Research of snow drifting on flat roofs with parapets by numerical simulations and wind tunnel tests","authors":"Xuanyi Zhou ,&nbsp;Yue Wu ,&nbsp;Lingui Xin ,&nbsp;Ming Gu","doi":"10.1016/j.coldregions.2024.104403","DOIUrl":null,"url":null,"abstract":"<div><div>Compared with flat roofs without parapets, those with parapets often feature a more complex and varied snow distribution. The paper explores the influences of the height of the parapet on snow distribution on flat roofs using numerical simulations (modified Finite Area Element method) and wind tunnel tests. When adopting the modified Finite Area Element method (FAE method), the paper also considers the effect of snow shape variations on roof snow transport. The wind tunnel test and numerical simulation reveal that the distribution of the friction velocity and flow field around flat roofs with parapets change tremendously with the parapet height. As the parapet height increases, the recirculation area behind the windward parapet gradually enlarges and the mean friction velocity of the snow cover decreases. This indicates that higher parapets exert a more significant hindrance to the roof snow drifting in the same direction as the incoming wind, leading to a larger exposure coefficient of flat roof snow load as the parapet height increases. Furthermore, comparing the results under different incoming wind speeds, it can draw a conclusion that the influence of incoming wind speed on the snow load exposure coefficient of flat roofs with parapets decreases as the parapet height increases. Additionally, by studying four different spans of flat roofs with parapets, it is observed that the threshold friction velocity on flat roofs increases, the range of snow erosion and deposition decrease. When the threshold friction velocity is less than or equal to 0.15 m/s and the roof span is greater than or equal to 60 m, the deposition of snow drifting starts to appear in front of the leeward parapet. With further increase in roof span, roof snow drifting in the same direction as incoming wind becomes predominant, leading to increased snow deposition in front of the leeward parapet, which in turn results in a more uneven snow distribution on the roof.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"231 ","pages":"Article 104403"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002842","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Compared with flat roofs without parapets, those with parapets often feature a more complex and varied snow distribution. The paper explores the influences of the height of the parapet on snow distribution on flat roofs using numerical simulations (modified Finite Area Element method) and wind tunnel tests. When adopting the modified Finite Area Element method (FAE method), the paper also considers the effect of snow shape variations on roof snow transport. The wind tunnel test and numerical simulation reveal that the distribution of the friction velocity and flow field around flat roofs with parapets change tremendously with the parapet height. As the parapet height increases, the recirculation area behind the windward parapet gradually enlarges and the mean friction velocity of the snow cover decreases. This indicates that higher parapets exert a more significant hindrance to the roof snow drifting in the same direction as the incoming wind, leading to a larger exposure coefficient of flat roof snow load as the parapet height increases. Furthermore, comparing the results under different incoming wind speeds, it can draw a conclusion that the influence of incoming wind speed on the snow load exposure coefficient of flat roofs with parapets decreases as the parapet height increases. Additionally, by studying four different spans of flat roofs with parapets, it is observed that the threshold friction velocity on flat roofs increases, the range of snow erosion and deposition decrease. When the threshold friction velocity is less than or equal to 0.15 m/s and the roof span is greater than or equal to 60 m, the deposition of snow drifting starts to appear in front of the leeward parapet. With further increase in roof span, roof snow drifting in the same direction as incoming wind becomes predominant, leading to increased snow deposition in front of the leeward parapet, which in turn results in a more uneven snow distribution on the roof.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Early Childhood Outcomes Among Infants Born by Vaginal Birth After Cesarean and Repeat Cesarean Delivery in the Military Health System.
IF 1.2 4区 医学Military MedicinePub Date : 2021-11-02 DOI: 10.1093/milmed/usaa536
Jacqueline Kikuchi, Anju Ranjit, Wei Jiang, Catherine Witkop, Lynette Hamlin, Tracey Perez Koehlmoos
Outcomes of very low birth weight infants born by vaginal delivery versus cesarean section
IF 1.1 4区 医学Signa VitaePub Date : 2018-10-24 DOI: 10.22514/SV142.102018.7
Darjan Kardum, B. F. Grčić, Andrijana Müller, S. Dessardo
Can maternal-child microbial seeding interventions improve the health of infants delivered by Cesarean section?
IF 30.3 1区 医学Cell host & microbePub Date : 2022-05-01 DOI: 10.1016/j.chom.2022.02.014
S. Hourigan, M. Dominguez-Bello, N. Mueller
来源期刊
Cold Regions Science and Technology
Cold Regions Science and Technology 工程技术-地球科学综合
CiteScore
7.40
自引率
12.20%
发文量
209
审稿时长
4.9 months
期刊介绍: Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere. Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost. Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.
期刊最新文献
Analysis of fractal and energy characteristics of low-temperature concrete under an impact load Editorial Board Investigation of unconfined compressive strength and pore structure of Basalt Fiber Pisha Sandstone cement soil under low temperatures Research on frost heaving pressure and frost deformation of water-filled fractures in the rock Wave-impact spray on marine vessels and structures: Literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1