Binqiang Li , Jun Luo , Yanbo Bai , Zhenxing He , Yapeng Wang , Penghao Li , Wanming Zhai
{"title":"Dynamic analysis of a vehicle-track coupled system subjected to uneven frost heave in the subgrade-bridge transition zone","authors":"Binqiang Li , Jun Luo , Yanbo Bai , Zhenxing He , Yapeng Wang , Penghao Li , Wanming Zhai","doi":"10.1016/j.coldregions.2024.104414","DOIUrl":null,"url":null,"abstract":"<div><div>Uneven frost heave is frequently encountered in the subgrade-bridge transition zones (SBTZ) in seasonally frozen soil regions, which could lead to the deformation of track and even jeopardize running safety of vehicles. To this end, this paper conducts dynamic analysis of a vehicle-track coupled system accounting for the effect of frost heave deformation. Initially, the finite element method is used to obtain the relationship between rail irregularity and frost heave deformation. Then, a vehicle-track vertically coupled dynamics model is established, and its accuracy is validated by the measured data, published results and existing model. The time-domain dynamic responses of a vehicle-track coupled system under typical frost heave are analyzed. Afterwards, parametric analysis of frost heave deformation is conducted. Finally, the control threshold of frost heave is proposed from aspects of vehicle running safety, comfort, and track deformation. Numerical results indicate that the allowable amplitude of frost heave should be respectively restricted to 5, 20, and 25 mm for frost heave wavelengths less than 10 m, between 10 and 15 m, and greater than 15 m. The research findings offer theoretical support for the maintenance and operation of track in the SBTZ in seasonally frozen soil regions.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"231 ","pages":"Article 104414"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002957","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Uneven frost heave is frequently encountered in the subgrade-bridge transition zones (SBTZ) in seasonally frozen soil regions, which could lead to the deformation of track and even jeopardize running safety of vehicles. To this end, this paper conducts dynamic analysis of a vehicle-track coupled system accounting for the effect of frost heave deformation. Initially, the finite element method is used to obtain the relationship between rail irregularity and frost heave deformation. Then, a vehicle-track vertically coupled dynamics model is established, and its accuracy is validated by the measured data, published results and existing model. The time-domain dynamic responses of a vehicle-track coupled system under typical frost heave are analyzed. Afterwards, parametric analysis of frost heave deformation is conducted. Finally, the control threshold of frost heave is proposed from aspects of vehicle running safety, comfort, and track deformation. Numerical results indicate that the allowable amplitude of frost heave should be respectively restricted to 5, 20, and 25 mm for frost heave wavelengths less than 10 m, between 10 and 15 m, and greater than 15 m. The research findings offer theoretical support for the maintenance and operation of track in the SBTZ in seasonally frozen soil regions.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.