Towards accurate ice accretion and galloping risk maps for Quebec: A data-driven approach

IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL Cold Regions Science and Technology Pub Date : 2025-02-17 DOI:10.1016/j.coldregions.2025.104460
Abdeslam Jamali , Reda Snaiki , Ahmed Rahem
{"title":"Towards accurate ice accretion and galloping risk maps for Quebec: A data-driven approach","authors":"Abdeslam Jamali ,&nbsp;Reda Snaiki ,&nbsp;Ahmed Rahem","doi":"10.1016/j.coldregions.2025.104460","DOIUrl":null,"url":null,"abstract":"<div><div>Ice accretion poses a significant threat to infrastructure and public safety, particularly in regions prone to severe winter weather. Accurate ice accretion hazard mapping is essential for effective risk management and mitigation. While substantial progress has been made in mapping these hazards, most existing ice accretion maps rely on calculated ice accretion values rather than direct measurements, leading to potential inaccuracies. To address these limitations, this study leverages field measurement data from Hydro-Québec's glacimètre network to develop refined ice accretion maps for Quebec. The maximum annual ice accretion thicknesses are extracted, and a rigorous probability distribution fitting analysis is applied to generate 10-, 30-, and 50-year return period values. These values are interpolated using both inverse-distance weighted interpolation (IDWI) and kriging techniques, allowing for a comparative evaluation of interpolation methods. Additionally, galloping risks are assessed using the Performance-Based Ice Engineering (PBIE) framework, producing galloping risk maps for various return periods. By incorporating real-world data and comparing interpolation approaches, this research enhances the accuracy of ice accretion and galloping risk maps, providing more reliable hazard assessments for Quebec's infrastructure.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"233 ","pages":"Article 104460"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X25000436","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Ice accretion poses a significant threat to infrastructure and public safety, particularly in regions prone to severe winter weather. Accurate ice accretion hazard mapping is essential for effective risk management and mitigation. While substantial progress has been made in mapping these hazards, most existing ice accretion maps rely on calculated ice accretion values rather than direct measurements, leading to potential inaccuracies. To address these limitations, this study leverages field measurement data from Hydro-Québec's glacimètre network to develop refined ice accretion maps for Quebec. The maximum annual ice accretion thicknesses are extracted, and a rigorous probability distribution fitting analysis is applied to generate 10-, 30-, and 50-year return period values. These values are interpolated using both inverse-distance weighted interpolation (IDWI) and kriging techniques, allowing for a comparative evaluation of interpolation methods. Additionally, galloping risks are assessed using the Performance-Based Ice Engineering (PBIE) framework, producing galloping risk maps for various return periods. By incorporating real-world data and comparing interpolation approaches, this research enhances the accuracy of ice accretion and galloping risk maps, providing more reliable hazard assessments for Quebec's infrastructure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cold Regions Science and Technology
Cold Regions Science and Technology 工程技术-地球科学综合
CiteScore
7.40
自引率
12.20%
发文量
209
审稿时长
4.9 months
期刊介绍: Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere. Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost. Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.
期刊最新文献
Editorial Board Towards accurate ice accretion and galloping risk maps for Quebec: A data-driven approach Ice particle grouping under waves: Experimental investigation of the initial stage of pancake ice formation Study on freeze-thaw resistance and Na+ leaching characteristics of red mud-fly ash-phosphogypsum multiple solid waste road base material Salt-frost heave development and resistance mechanisms in saline soils solidified with multiple industrial wastes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1