CO2 levels and SARS-CoV-2 transmission in public schools: A retrospective cohort study in Montreal (Canada)

Olivier Séguin , Dorra Ghorbal , Gabrielle Denault , Karine Trudeau , Patrick Poulin , Catherine Dea , Stéphane Perron
{"title":"CO2 levels and SARS-CoV-2 transmission in public schools: A retrospective cohort study in Montreal (Canada)","authors":"Olivier Séguin ,&nbsp;Dorra Ghorbal ,&nbsp;Gabrielle Denault ,&nbsp;Karine Trudeau ,&nbsp;Patrick Poulin ,&nbsp;Catherine Dea ,&nbsp;Stéphane Perron","doi":"10.1016/j.indenv.2025.100077","DOIUrl":null,"url":null,"abstract":"<div><div>Scientific evidence suggests that SARS-CoV-2 is transmitted primarily through close contact with susceptible individuals and that the risk of transmission increases during prolonged exposure in confined, inadequately ventilated and densely occupied spaces. In response to concerns related to inadequate ventilation for students and staff, CO<sub>2</sub> concentrations were measured in all of Montreal’s public elementary and high schools during winter of 2020–21. This study aims to evaluate the associations between ventilation system types, mid-class CO<sub>2</sub> concentrations and SARS-CoV-2 transmission amongst Montreal's public school’s attendees during the 2020–2021 school year. Data on building ventilation types, CO<sub>2</sub> measurements and school characteristics such as total enrollment and socioeconomic status (SES), were sourced from Ministry of Education’s administrative data for the 2020–2021 school year. During this pandemic period, the Montreal Public Health Department investigated COVID-19 cases among students and staff in public elementary and high schools, gradually developing a regional database of school cases and outbreaks from intervention files. Negative binomial regression models were employed to examine associations between mid-class CO<sub>2</sub> concentrations and COVID-19 incidence rates for both total cases and those acquired within schools. Regression models were adjusted for school types, neighborhood COVID-19 incidence rates and school SES. The mid-class CO<sub>2</sub> concentration<del>s</del> median was 1050 ppm in the 384 school buildings. CO<sub>2</sub> concentrations were associated with ventilation systems, with schools using natural ventilation exhibiting higher concentrations compared to three other types of mechanical ventilation. No positive association was observed between the incidence rates of school-acquired cases and higher mid-class CO<sub>2</sub> concentrations in both unadjusted and adjusted models.</div></div>","PeriodicalId":100665,"journal":{"name":"Indoor Environments","volume":"2 1","pages":"Article 100077"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor Environments","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950362025000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scientific evidence suggests that SARS-CoV-2 is transmitted primarily through close contact with susceptible individuals and that the risk of transmission increases during prolonged exposure in confined, inadequately ventilated and densely occupied spaces. In response to concerns related to inadequate ventilation for students and staff, CO2 concentrations were measured in all of Montreal’s public elementary and high schools during winter of 2020–21. This study aims to evaluate the associations between ventilation system types, mid-class CO2 concentrations and SARS-CoV-2 transmission amongst Montreal's public school’s attendees during the 2020–2021 school year. Data on building ventilation types, CO2 measurements and school characteristics such as total enrollment and socioeconomic status (SES), were sourced from Ministry of Education’s administrative data for the 2020–2021 school year. During this pandemic period, the Montreal Public Health Department investigated COVID-19 cases among students and staff in public elementary and high schools, gradually developing a regional database of school cases and outbreaks from intervention files. Negative binomial regression models were employed to examine associations between mid-class CO2 concentrations and COVID-19 incidence rates for both total cases and those acquired within schools. Regression models were adjusted for school types, neighborhood COVID-19 incidence rates and school SES. The mid-class CO2 concentrations median was 1050 ppm in the 384 school buildings. CO2 concentrations were associated with ventilation systems, with schools using natural ventilation exhibiting higher concentrations compared to three other types of mechanical ventilation. No positive association was observed between the incidence rates of school-acquired cases and higher mid-class CO2 concentrations in both unadjusted and adjusted models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to “Ventilation characteristics in a hospital where a COVID-19 outbreak occurred in the winter of 2020” [Indoor Environ. 2 (2025) 100065] Implementing Bayesian inference on a stochastic CO2-based grey-box model CO2 levels and SARS-CoV-2 transmission in public schools: A retrospective cohort study in Montreal (Canada) Cognition, economic decision-making, and physiological response to carbon dioxide Corrigendum to “Towards equitable and sustainable indoor air quality guidelines – A perspective on mandating indoor air quality for public buildings” [Indoor Environ. 2 1 (2025) 100070]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1