{"title":"A recursive method for determining long-period mesh stiffness of cylindrical gears considering real tooth surface deviations","authors":"Fengfeng Liu , Geng Liu , Lan Liu , Jingyi Gong","doi":"10.1016/j.mechmachtheory.2024.105898","DOIUrl":null,"url":null,"abstract":"<div><div>A recursive method is proposed for determining long-period time-varying mesh stiffness (TVMS) of cylindrical gears, considering real tooth surface deviations. Due to variations in the real deviations of each gear tooth and the presence of hunting tooth pairs, the superposition of contact point deviations between the driving and driven gears results in a long period for the TVMS. A long-period recursive model of contact point deviation superposition is developed based on even mesh technique and tooth surface measurement technique. This model considers the matching relationships of contact elements and the forward and backward recursion relationships of each contact element over a long period. Furthermore, a loaded tooth contact analysis (LTCA) model with long-period superposition deviations is established, and a double-layer iterative algorithm is devised to solve for long-period TVMS and transmission error (TE). The validity of the proposed method is confirmed through tooth surface measurements and TE experiments. The effects of load, deviation superposition, and deviation size on long-period TVMS are investigated. Finally, the main frequency components in the TVMS spectrum that may cause low-frequency vibrations in gears are identified.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"206 ","pages":"Article 105898"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24003252","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A recursive method is proposed for determining long-period time-varying mesh stiffness (TVMS) of cylindrical gears, considering real tooth surface deviations. Due to variations in the real deviations of each gear tooth and the presence of hunting tooth pairs, the superposition of contact point deviations between the driving and driven gears results in a long period for the TVMS. A long-period recursive model of contact point deviation superposition is developed based on even mesh technique and tooth surface measurement technique. This model considers the matching relationships of contact elements and the forward and backward recursion relationships of each contact element over a long period. Furthermore, a loaded tooth contact analysis (LTCA) model with long-period superposition deviations is established, and a double-layer iterative algorithm is devised to solve for long-period TVMS and transmission error (TE). The validity of the proposed method is confirmed through tooth surface measurements and TE experiments. The effects of load, deviation superposition, and deviation size on long-period TVMS are investigated. Finally, the main frequency components in the TVMS spectrum that may cause low-frequency vibrations in gears are identified.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry