{"title":"Inverse and forward kinematic analysis of a 6-DOF foldable mechanism with a circular rail (FoldRail mechanism)","authors":"Anton Antonov, Alexey Fomin, Sergey Kiselev","doi":"10.1016/j.mechmachtheory.2024.105904","DOIUrl":null,"url":null,"abstract":"<div><div>This article considers an inverse and forward kinematic analysis of a recently proposed foldable parallel mechanism with a circular rail (FoldRail mechanism). The mechanism has six degrees of freedom and three RRRS kinematic chains. Here, R and S indicate revolute and spherical joints, respectively, and the first and third R joints of each chain are actuated. First, the paper presents an algorithm to find a closed-form solution to the inverse kinematic problem. The analysis shows there can be four different solutions for each kinematic chain. Next, the paper studies forward kinematics and develops an elimination-based approach to handle this problem. The proposed method relies on the vector convolution operation and avoids symbolic computations inherent to most other similar techniques. It is shown that the forward kinematics has up to 16 distinct solutions, corresponding to 16 different assembly modes of the mechanism. Numerical examples illustrate the developed techniques for both the inverse and forward kinematic problems. The proposed algorithms provide the basis for subsequent performance evaluation and design optimization, and they can be applied to other parallel mechanisms.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"206 ","pages":"Article 105904"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24003318","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article considers an inverse and forward kinematic analysis of a recently proposed foldable parallel mechanism with a circular rail (FoldRail mechanism). The mechanism has six degrees of freedom and three RRRS kinematic chains. Here, R and S indicate revolute and spherical joints, respectively, and the first and third R joints of each chain are actuated. First, the paper presents an algorithm to find a closed-form solution to the inverse kinematic problem. The analysis shows there can be four different solutions for each kinematic chain. Next, the paper studies forward kinematics and develops an elimination-based approach to handle this problem. The proposed method relies on the vector convolution operation and avoids symbolic computations inherent to most other similar techniques. It is shown that the forward kinematics has up to 16 distinct solutions, corresponding to 16 different assembly modes of the mechanism. Numerical examples illustrate the developed techniques for both the inverse and forward kinematic problems. The proposed algorithms provide the basis for subsequent performance evaluation and design optimization, and they can be applied to other parallel mechanisms.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry