{"title":"Systematic mapping of synthesis methods for compliant grippers using PRISMA","authors":"Estefania Hermoza Llanos , Burkhard Corves , Mathias Huesing , Anupam Saxena","doi":"10.1016/j.mechmachtheory.2024.105900","DOIUrl":null,"url":null,"abstract":"<div><div>Systematic design, development and applications of Compliant Grippers (CGs) have surged in the past decade. The works are diverse but information is dispersed. This paper provides a systematic review of 1009 peer reviewed manuscripts in the last ten years, sourced from the Scopus database. Keywords search on CG design, analytical methods, gripper size and design verification. 239 papers are mapped onto applications, types of workpieces, actuation technologies, focusing onto CG design methodologies. Actuation methods are classified into indirect and direct. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol is followed. Key findings include: (i) CGs are mostly designed with direct mechanical load actuation, the corresponding synthesis methods follow well defined processes; (ii) Most CGs cater to convex, regular and small objects; (iii) much focus on their application is on research and development followed by manufacturing and assembly, healthcare, electronics and semiconductors and food processing; (iv) fluidic actuation is gaining prominence but not as much as direct actuation; and (v) systematic synthesis methods are needed for other existing and emerging technologies like controlled adhesion, smart materials and jamming.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"206 ","pages":"Article 105900"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24003276","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Systematic design, development and applications of Compliant Grippers (CGs) have surged in the past decade. The works are diverse but information is dispersed. This paper provides a systematic review of 1009 peer reviewed manuscripts in the last ten years, sourced from the Scopus database. Keywords search on CG design, analytical methods, gripper size and design verification. 239 papers are mapped onto applications, types of workpieces, actuation technologies, focusing onto CG design methodologies. Actuation methods are classified into indirect and direct. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol is followed. Key findings include: (i) CGs are mostly designed with direct mechanical load actuation, the corresponding synthesis methods follow well defined processes; (ii) Most CGs cater to convex, regular and small objects; (iii) much focus on their application is on research and development followed by manufacturing and assembly, healthcare, electronics and semiconductors and food processing; (iv) fluidic actuation is gaining prominence but not as much as direct actuation; and (v) systematic synthesis methods are needed for other existing and emerging technologies like controlled adhesion, smart materials and jamming.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry