Development of CdS/TNTA nanocomposite to improve performance of simultaneous electrocoagulation-photocatalysis process for hydrogen production and ciprofloxacin elimination

Reno Pratiwi , Muhammad Ibadurrohman , Eniya Listiani Dewi , Ratnawati , Rike Yudianti , Saddam Husein , Slamet
{"title":"Development of CdS/TNTA nanocomposite to improve performance of simultaneous electrocoagulation-photocatalysis process for hydrogen production and ciprofloxacin elimination","authors":"Reno Pratiwi ,&nbsp;Muhammad Ibadurrohman ,&nbsp;Eniya Listiani Dewi ,&nbsp;Ratnawati ,&nbsp;Rike Yudianti ,&nbsp;Saddam Husein ,&nbsp;Slamet","doi":"10.1016/j.mset.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to enhance the effectiveness of the simultaneous combination of electrocoagulation and photocatalysis processes by modifying the configuration of the photocatalyst. A heterojunction mechanism was developed by integrating CdS with a photocatalyst using<!--> <!-->a TiO<sub>2</sub> nanotube array (TNTA) <span><span>[1]</span></span>. This mechanism is designed to enhance photocatalytic efficiency by reducing electron-hole recombination. The successful synthesis of CdS/TNTA nanocomposite was confirmed using various characterization methods, including XRD, HRTEM, FESEM, UV–Vis DRS, PL, transient photocurrent, and XPS. The results showed that CdS/TNTA worked better than TNTA in a single photocatalysis process, achieving improved Ciprofloxacin (CIP) removal (7.9 % to 13.8 %) and hydrogen gas production (0.006 to 0.156 mmol/m<sup>2</sup>plate). Simultaneously operating electrocoagulation and photocatalysis systems in the respective optimized settings resulted in significant enhancements. Hydrogen gas yield increased by 44 % (from 443 to 636 mmol/m<sup>2</sup> plate) compared to using only TNTA, while CIP removal improved from 79 % to 83 %. This study demonstrates that the synthesis of CdS/TNTA photocatalysts may be a promising approach to achieving high performance of hydrogen recovery while simultaneously removing CIP from wastewater.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 121-130"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299125000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to enhance the effectiveness of the simultaneous combination of electrocoagulation and photocatalysis processes by modifying the configuration of the photocatalyst. A heterojunction mechanism was developed by integrating CdS with a photocatalyst using a TiO2 nanotube array (TNTA) [1]. This mechanism is designed to enhance photocatalytic efficiency by reducing electron-hole recombination. The successful synthesis of CdS/TNTA nanocomposite was confirmed using various characterization methods, including XRD, HRTEM, FESEM, UV–Vis DRS, PL, transient photocurrent, and XPS. The results showed that CdS/TNTA worked better than TNTA in a single photocatalysis process, achieving improved Ciprofloxacin (CIP) removal (7.9 % to 13.8 %) and hydrogen gas production (0.006 to 0.156 mmol/m2plate). Simultaneously operating electrocoagulation and photocatalysis systems in the respective optimized settings resulted in significant enhancements. Hydrogen gas yield increased by 44 % (from 443 to 636 mmol/m2 plate) compared to using only TNTA, while CIP removal improved from 79 % to 83 %. This study demonstrates that the synthesis of CdS/TNTA photocatalysts may be a promising approach to achieving high performance of hydrogen recovery while simultaneously removing CIP from wastewater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science for Energy Technologies
Materials Science for Energy Technologies Materials Science-Materials Science (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
41
审稿时长
39 days
期刊最新文献
Development of CdS/TNTA nanocomposite to improve performance of simultaneous electrocoagulation-photocatalysis process for hydrogen production and ciprofloxacin elimination Li-S-B Glass-Ceramics: A Novel electrode materials for energy storage technology Selective hydrogenation of 1,3-butadiene to butenes on ceria-supported Pd, Ni and PdNi catalysts: Combined experimental and DFT outlook Compositing LaSrMnO3 perovskite and graphene oxide nanoribbons for highly stable asymmetric electrochemical supercapacitors Facile synthesis and electrochemical performance of bacterial cellulose/reduced graphene oxide/NiCo-layered double hydroxide composite film for self-standing supercapacitor electrode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1