Development of CdS/TNTA nanocomposite to improve performance of simultaneous electrocoagulation-photocatalysis process for hydrogen production and ciprofloxacin elimination
Reno Pratiwi , Muhammad Ibadurrohman , Eniya Listiani Dewi , Ratnawati , Rike Yudianti , Saddam Husein , Slamet
{"title":"Development of CdS/TNTA nanocomposite to improve performance of simultaneous electrocoagulation-photocatalysis process for hydrogen production and ciprofloxacin elimination","authors":"Reno Pratiwi , Muhammad Ibadurrohman , Eniya Listiani Dewi , Ratnawati , Rike Yudianti , Saddam Husein , Slamet","doi":"10.1016/j.mset.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to enhance the effectiveness of the simultaneous combination of electrocoagulation and photocatalysis processes by modifying the configuration of the photocatalyst. A heterojunction mechanism was developed by integrating CdS with a photocatalyst using<!--> <!-->a TiO<sub>2</sub> nanotube array (TNTA) <span><span>[1]</span></span>. This mechanism is designed to enhance photocatalytic efficiency by reducing electron-hole recombination. The successful synthesis of CdS/TNTA nanocomposite was confirmed using various characterization methods, including XRD, HRTEM, FESEM, UV–Vis DRS, PL, transient photocurrent, and XPS. The results showed that CdS/TNTA worked better than TNTA in a single photocatalysis process, achieving improved Ciprofloxacin (CIP) removal (7.9 % to 13.8 %) and hydrogen gas production (0.006 to 0.156 mmol/m<sup>2</sup>plate). Simultaneously operating electrocoagulation and photocatalysis systems in the respective optimized settings resulted in significant enhancements. Hydrogen gas yield increased by 44 % (from 443 to 636 mmol/m<sup>2</sup> plate) compared to using only TNTA, while CIP removal improved from 79 % to 83 %. This study demonstrates that the synthesis of CdS/TNTA photocatalysts may be a promising approach to achieving high performance of hydrogen recovery while simultaneously removing CIP from wastewater.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 121-130"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299125000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to enhance the effectiveness of the simultaneous combination of electrocoagulation and photocatalysis processes by modifying the configuration of the photocatalyst. A heterojunction mechanism was developed by integrating CdS with a photocatalyst using a TiO2 nanotube array (TNTA) [1]. This mechanism is designed to enhance photocatalytic efficiency by reducing electron-hole recombination. The successful synthesis of CdS/TNTA nanocomposite was confirmed using various characterization methods, including XRD, HRTEM, FESEM, UV–Vis DRS, PL, transient photocurrent, and XPS. The results showed that CdS/TNTA worked better than TNTA in a single photocatalysis process, achieving improved Ciprofloxacin (CIP) removal (7.9 % to 13.8 %) and hydrogen gas production (0.006 to 0.156 mmol/m2plate). Simultaneously operating electrocoagulation and photocatalysis systems in the respective optimized settings resulted in significant enhancements. Hydrogen gas yield increased by 44 % (from 443 to 636 mmol/m2 plate) compared to using only TNTA, while CIP removal improved from 79 % to 83 %. This study demonstrates that the synthesis of CdS/TNTA photocatalysts may be a promising approach to achieving high performance of hydrogen recovery while simultaneously removing CIP from wastewater.