Guanwu Yin , Xiaoyue Yang , Quanbo Xu , Xiaofan Chen , Haiyan Wang
{"title":"Preparation of amino acid-derived silicones as durable and biocompatible antibacterial finishing agents for cotton fabric","authors":"Guanwu Yin , Xiaoyue Yang , Quanbo Xu , Xiaofan Chen , Haiyan Wang","doi":"10.1016/j.reactfunctpolym.2025.106157","DOIUrl":null,"url":null,"abstract":"<div><div>Antibacterial cotton fabric has attracted significant attention due to its widespread applications in clinical and medical supplies. However, many of these fabrics suffer from inadequate antibacterial durability and biocompatibility, which not only limit their practical application but also pose potential risks to human health. Herein, a series of aminoethylaminopropyl polydimethylsiloxane (AEAPS) with various amino acids were successfully synthesized, then the corresponding silicone oil emulsions were obtained via phase inversion emulsification and a durable and biocompatible antibacterial cotton fabric was achieved. The influence of various amino acid residues on antibacterial efficacy was investigated and L-Tryptophan (Trp) graft silicone oil (L-Trp-AEAPS) exhibits the best antibacterial performance. In addition, the resulting antibacterial cotton fabric (L-Trp-AEAPS-CF) shows good antibacterial activity against <em>E. coli</em> and <em>S. aureus</em>, excellent biocompatibility, and low toxicity owing to the amino acid residue. Finally, after 50 laundering cycles, the L-Trp-AEAPS-CF retained an antibacterial efficiency exceeding 98 %, indicating excellent washing durability. The L-Trp-AEAPS-CF with antibacterial durability and biocompatibility exhibited broad application prospects in biomedical materials.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"208 ","pages":"Article 106157"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514825000094","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Antibacterial cotton fabric has attracted significant attention due to its widespread applications in clinical and medical supplies. However, many of these fabrics suffer from inadequate antibacterial durability and biocompatibility, which not only limit their practical application but also pose potential risks to human health. Herein, a series of aminoethylaminopropyl polydimethylsiloxane (AEAPS) with various amino acids were successfully synthesized, then the corresponding silicone oil emulsions were obtained via phase inversion emulsification and a durable and biocompatible antibacterial cotton fabric was achieved. The influence of various amino acid residues on antibacterial efficacy was investigated and L-Tryptophan (Trp) graft silicone oil (L-Trp-AEAPS) exhibits the best antibacterial performance. In addition, the resulting antibacterial cotton fabric (L-Trp-AEAPS-CF) shows good antibacterial activity against E. coli and S. aureus, excellent biocompatibility, and low toxicity owing to the amino acid residue. Finally, after 50 laundering cycles, the L-Trp-AEAPS-CF retained an antibacterial efficiency exceeding 98 %, indicating excellent washing durability. The L-Trp-AEAPS-CF with antibacterial durability and biocompatibility exhibited broad application prospects in biomedical materials.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.