Enhanced CO2 capture via calcium looping with mesoporous ladle furnace stainless steel slag

Priyanka Kumari , Farah Kaddah , Nahla Al Amoodi , Ahmed AlHajaj , Ludovic F. Dumée
{"title":"Enhanced CO2 capture via calcium looping with mesoporous ladle furnace stainless steel slag","authors":"Priyanka Kumari ,&nbsp;Farah Kaddah ,&nbsp;Nahla Al Amoodi ,&nbsp;Ahmed AlHajaj ,&nbsp;Ludovic F. Dumée","doi":"10.1016/j.ccst.2024.100354","DOIUrl":null,"url":null,"abstract":"<div><div>CaO-based materials have attracted considerable interest because of their potential roles in thermochemical CO<sub>2</sub> capture via the calcium looping (CaL) process. The steel manufacturing sector inevitably generates substantial amounts of slag as a by-product, posing environmental issues such as soil contamination if left untreated. Despite its abundance and low cost, steel slag, which contains 20–60 % CaO, has not been extensively researched for its potential in the CaL process. This study introduces ladle furnace slag (LFS) as an optimal CaO-rich material for developing mesoporous composites to improve CO<sub>2</sub> sequestration in the CaL process. Using an autoclave reactor/muffle furnace setup, we conducted a parametric investigation on operational variables including reaction time, temperature, pressure, and liquid-solid ratio and determined the kinetics of carbonation/calcination reaction of CaL process. Our findings reveal that the CO<sub>2</sub> capture performance of modified LFS surpassed that of the bare LFS, achieving a CO<sub>2</sub> uptake of 7.55 ± 0.01 g per g of sorbent over 20 cycles. Additionally, the modified LFS exhibited the capability to undergo a minimum of 20 regeneration cycles, reaching steady state after the 15th cycle with minimal variation of 0.01 g per g of sorbent. The enhanced stability was linked mainly due to the presence of ceramics such as Al<sub>2</sub>O<sub>3</sub> and Fe<sub>2</sub>O<sub>3</sub> in ratios of 1:5 and 1:6.5 respectively, with respect to CaO, achieved through acid etching. Such mineralogical transformation of the modified LFS improved its resistance towards sintering while ensuring 100 % recycling of metals in the LFS. Therefore, this study highlights the sustainable utilization of LFS as a valuable and efficient sorbent for CO<sub>2</sub> capture, showcasing its potential for repurposing in environmental applications.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100354"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CaO-based materials have attracted considerable interest because of their potential roles in thermochemical CO2 capture via the calcium looping (CaL) process. The steel manufacturing sector inevitably generates substantial amounts of slag as a by-product, posing environmental issues such as soil contamination if left untreated. Despite its abundance and low cost, steel slag, which contains 20–60 % CaO, has not been extensively researched for its potential in the CaL process. This study introduces ladle furnace slag (LFS) as an optimal CaO-rich material for developing mesoporous composites to improve CO2 sequestration in the CaL process. Using an autoclave reactor/muffle furnace setup, we conducted a parametric investigation on operational variables including reaction time, temperature, pressure, and liquid-solid ratio and determined the kinetics of carbonation/calcination reaction of CaL process. Our findings reveal that the CO2 capture performance of modified LFS surpassed that of the bare LFS, achieving a CO2 uptake of 7.55 ± 0.01 g per g of sorbent over 20 cycles. Additionally, the modified LFS exhibited the capability to undergo a minimum of 20 regeneration cycles, reaching steady state after the 15th cycle with minimal variation of 0.01 g per g of sorbent. The enhanced stability was linked mainly due to the presence of ceramics such as Al2O3 and Fe2O3 in ratios of 1:5 and 1:6.5 respectively, with respect to CaO, achieved through acid etching. Such mineralogical transformation of the modified LFS improved its resistance towards sintering while ensuring 100 % recycling of metals in the LFS. Therefore, this study highlights the sustainable utilization of LFS as a valuable and efficient sorbent for CO2 capture, showcasing its potential for repurposing in environmental applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How do CaO/CuO materials evolve in integrated calcium and chemical looping cycles? Recent advances and challenges in solid sorbents for CO2 capture Towards net-zero in steel production: Process simulation and environmental impacts of carbon capture, storage and utilisation of blast furnace gas Developing non-aqueous slurry for CO2 capture CO2 capture performance and foaming mechanism of modified amine-based absorbents: A study based on molecular dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1