Enhancing CO2 sequestration efficiency: A comprehensive study of nanostructured MOF-composite membrane for sustainable climate solution

Putu Doddy Sutrisna , Sibudjing Kawi , Khoiruddin Khoiruddin , Pra Cipta W.B. Mustika , Nicholaus Prasetya , I Gede Wenten
{"title":"Enhancing CO2 sequestration efficiency: A comprehensive study of nanostructured MOF-composite membrane for sustainable climate solution","authors":"Putu Doddy Sutrisna ,&nbsp;Sibudjing Kawi ,&nbsp;Khoiruddin Khoiruddin ,&nbsp;Pra Cipta W.B. Mustika ,&nbsp;Nicholaus Prasetya ,&nbsp;I Gede Wenten","doi":"10.1016/j.ccst.2025.100366","DOIUrl":null,"url":null,"abstract":"<div><div>This study provides a detailed exploration of nanostructured Metal-Organic Frameworks (MOFs)-composite membranes as a novel and efficient solution for CO<sub>2</sub> sequestration process. The integration of MOFs into membrane systems is shown to significantly enhance gas separation performance by improving both selectivity and permeability, thus addressing the inherent limitations of conventional CO<sub>2</sub> capture technologies. A range of synthesis techniques, including solvothermal synthesis, layer-by-layer assembly, and in-situ growth, are discussed, highlighting their role in optimizing the interaction between MOFs and membrane materials. In addition, the CO<sub>2</sub> capture and separation mechanism through the membrane are thoroughly discussed. The analysis further explores the impact of nanostructuring on the mechanical, chemical, and operational stability of the membranes, with particular attention to their potential for industrial scalability. Key challenges, such as MOF regeneration, economic feasibility, and environmental sustainability, are critically assessed. Additionally, the incorporation of advanced computational modelling and green synthesis methods is emphasized as essential in furthering the development of MOF-composite membranes. This study highlights the significant potential of these advanced materials to revolutionize CO<sub>2</sub> capture technologies, contributing to more sustainable and scalable approaches to climate change mitigation.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100366"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides a detailed exploration of nanostructured Metal-Organic Frameworks (MOFs)-composite membranes as a novel and efficient solution for CO2 sequestration process. The integration of MOFs into membrane systems is shown to significantly enhance gas separation performance by improving both selectivity and permeability, thus addressing the inherent limitations of conventional CO2 capture technologies. A range of synthesis techniques, including solvothermal synthesis, layer-by-layer assembly, and in-situ growth, are discussed, highlighting their role in optimizing the interaction between MOFs and membrane materials. In addition, the CO2 capture and separation mechanism through the membrane are thoroughly discussed. The analysis further explores the impact of nanostructuring on the mechanical, chemical, and operational stability of the membranes, with particular attention to their potential for industrial scalability. Key challenges, such as MOF regeneration, economic feasibility, and environmental sustainability, are critically assessed. Additionally, the incorporation of advanced computational modelling and green synthesis methods is emphasized as essential in furthering the development of MOF-composite membranes. This study highlights the significant potential of these advanced materials to revolutionize CO2 capture technologies, contributing to more sustainable and scalable approaches to climate change mitigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How do CaO/CuO materials evolve in integrated calcium and chemical looping cycles? Recent advances and challenges in solid sorbents for CO2 capture Developing non-aqueous slurry for CO2 capture CO2 capture performance and foaming mechanism of modified amine-based absorbents: A study based on molecular dynamics Sulfur-vulcanized CoFe2O4 with high-efficiency photo-to-thermal conversion for enhanced CO2 reduction and mechanistic insights into selectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1