Multiscale modeling for the reduction kinetics of a perovskite oxygen carrier based on quantum chemistry and CFD–DEM

Ruiwen Wang , Zhenshan Li , Lei Liu
{"title":"Multiscale modeling for the reduction kinetics of a perovskite oxygen carrier based on quantum chemistry and CFD–DEM","authors":"Ruiwen Wang ,&nbsp;Zhenshan Li ,&nbsp;Lei Liu","doi":"10.1016/j.ccst.2024.100357","DOIUrl":null,"url":null,"abstract":"<div><div>The redox of oxygen carriers in chemical looping are non-catalytic heterogeneous reactions which involve physical and chemical processes spanning across four scales: the surface atoms, grains, particles, and the reactor. Although various models are presented in the literature for every single scale, the coupling between every two adjacent scales has not been completely integrated due to the computational cost. A multiscale reaction kinetics model coupling all four scales is developed in this study, combining density-functional theory calculation for reaction mechanisms, microkinetics for grain conversion, the Fick's Law for intraparticle gas diffusion, and CFD–DEM for fluidization. Three coupling simplifications are adopted to reduce computational cost, including the partial equilibrium assumption, continuous grain distribution, and Thiele's-modulus-based effectiveness factor model. Computation is conducted for the reduction of a perovskite oxygen carrier (CaMn<sub>0.375</sub>Ti<sub>0.5</sub>Fe<sub>0.125</sub>O<sub>3−</sub><em><sub>δ</sub></em>) by CO, which is experimentally verified on a micro-fluidized-bed thermogravimetric analyzer. The influences of parameters including the temperature, gas concentration, active site density, specific surface area, and particle diversity, are discussed, providing a comparison on the weights of every scale in the process.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100357"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The redox of oxygen carriers in chemical looping are non-catalytic heterogeneous reactions which involve physical and chemical processes spanning across four scales: the surface atoms, grains, particles, and the reactor. Although various models are presented in the literature for every single scale, the coupling between every two adjacent scales has not been completely integrated due to the computational cost. A multiscale reaction kinetics model coupling all four scales is developed in this study, combining density-functional theory calculation for reaction mechanisms, microkinetics for grain conversion, the Fick's Law for intraparticle gas diffusion, and CFD–DEM for fluidization. Three coupling simplifications are adopted to reduce computational cost, including the partial equilibrium assumption, continuous grain distribution, and Thiele's-modulus-based effectiveness factor model. Computation is conducted for the reduction of a perovskite oxygen carrier (CaMn0.375Ti0.5Fe0.125O3−δ) by CO, which is experimentally verified on a micro-fluidized-bed thermogravimetric analyzer. The influences of parameters including the temperature, gas concentration, active site density, specific surface area, and particle diversity, are discussed, providing a comparison on the weights of every scale in the process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How do CaO/CuO materials evolve in integrated calcium and chemical looping cycles? Recent advances and challenges in solid sorbents for CO2 capture Developing non-aqueous slurry for CO2 capture CO2 capture performance and foaming mechanism of modified amine-based absorbents: A study based on molecular dynamics Sulfur-vulcanized CoFe2O4 with high-efficiency photo-to-thermal conversion for enhanced CO2 reduction and mechanistic insights into selectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1