Decarbonizing Saudi Arabia energy and industrial sectors: Assessment of carbon capture cost

Feras Rowaihy , Ali Hamieh , Naser Odeh , Mohamad Hejazi , Mohammed Al-Juaied , Abdulkader M. Afifi , Hussein Hoteit
{"title":"Decarbonizing Saudi Arabia energy and industrial sectors: Assessment of carbon capture cost","authors":"Feras Rowaihy ,&nbsp;Ali Hamieh ,&nbsp;Naser Odeh ,&nbsp;Mohamad Hejazi ,&nbsp;Mohammed Al-Juaied ,&nbsp;Abdulkader M. Afifi ,&nbsp;Hussein Hoteit","doi":"10.1016/j.ccst.2025.100375","DOIUrl":null,"url":null,"abstract":"<div><div>The global drive for net-zero emissions has highlighted carbon capture, utilization, and storage (CCUS) as a critical tool to reduce CO₂ emissions from energy and industrial sectors. Achieving climate goals necessitates a comprehensive understanding of regional CO₂ emission profiles and capture costs to inform effective decarbonization strategies. As one of the largest CO₂ emitters globally, Saudi Arabia has committed to achieving net-zero emissions by 2060. However, the economic implications of deploying CCUS within the Kingdom remain insufficiently explored. This work provides updated estimates of CO₂ emissions across key sectors in Saudi Arabia, including electricity, petrochemicals, refineries, cement, steel, ammonia production, and desalination, based on 2022 data. The CO<sub>2</sub> capture costs are estimated by incorporating stationary emission plant data with reference cases from analogous industrial sectors, including capital expenditure (CAPEX) and operating expenditure (OPEX). The total capture cost per ton of CO<sub>2</sub> is determined by combining these cost components using an established economic model and a custom-developed tool. The study constructs a comprehensive CO₂ capture cost curve for Saudi Arabia, highlighting the variability of capture costs across regions and industries. Our analysis indicates an average CO₂ capture cost of $69/tCO₂, with substantial variability across industries. Ammonia production emerges as the most cost-efficient at $11/tCO₂, driven by its high CO₂ concentration, whereas smaller-scale operations can incur costs up to $189/tCO₂. Results show that economies of scale and CO₂ concentration play pivotal roles in determining capture feasibility, with low-cost opportunities identified in ammonia production and high-emission industrial clusters, particularly in the Eastern and Western regions. The Eastern region, with its planned CCS hub in Jubail, emerges as the most promising for near-term deployment. In contrast, the Western region requires additional focus on storage alternatives such as mineralization. Benchmarking against global capture costs reveals that Saudi Arabia's industrial landscape, characterized by large-scale emitters, is well-positioned for cost-effective CCUS implementation. The study highlights the need to prioritize low-cost capture opportunities and develop strategies tailored to regional and sector-specific conditions, offering a roadmap for the Kingdom's significant contribution to global net-zero ambitions.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100375"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The global drive for net-zero emissions has highlighted carbon capture, utilization, and storage (CCUS) as a critical tool to reduce CO₂ emissions from energy and industrial sectors. Achieving climate goals necessitates a comprehensive understanding of regional CO₂ emission profiles and capture costs to inform effective decarbonization strategies. As one of the largest CO₂ emitters globally, Saudi Arabia has committed to achieving net-zero emissions by 2060. However, the economic implications of deploying CCUS within the Kingdom remain insufficiently explored. This work provides updated estimates of CO₂ emissions across key sectors in Saudi Arabia, including electricity, petrochemicals, refineries, cement, steel, ammonia production, and desalination, based on 2022 data. The CO2 capture costs are estimated by incorporating stationary emission plant data with reference cases from analogous industrial sectors, including capital expenditure (CAPEX) and operating expenditure (OPEX). The total capture cost per ton of CO2 is determined by combining these cost components using an established economic model and a custom-developed tool. The study constructs a comprehensive CO₂ capture cost curve for Saudi Arabia, highlighting the variability of capture costs across regions and industries. Our analysis indicates an average CO₂ capture cost of $69/tCO₂, with substantial variability across industries. Ammonia production emerges as the most cost-efficient at $11/tCO₂, driven by its high CO₂ concentration, whereas smaller-scale operations can incur costs up to $189/tCO₂. Results show that economies of scale and CO₂ concentration play pivotal roles in determining capture feasibility, with low-cost opportunities identified in ammonia production and high-emission industrial clusters, particularly in the Eastern and Western regions. The Eastern region, with its planned CCS hub in Jubail, emerges as the most promising for near-term deployment. In contrast, the Western region requires additional focus on storage alternatives such as mineralization. Benchmarking against global capture costs reveals that Saudi Arabia's industrial landscape, characterized by large-scale emitters, is well-positioned for cost-effective CCUS implementation. The study highlights the need to prioritize low-cost capture opportunities and develop strategies tailored to regional and sector-specific conditions, offering a roadmap for the Kingdom's significant contribution to global net-zero ambitions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How do CaO/CuO materials evolve in integrated calcium and chemical looping cycles? Recent advances and challenges in solid sorbents for CO2 capture Towards net-zero in steel production: Process simulation and environmental impacts of carbon capture, storage and utilisation of blast furnace gas Developing non-aqueous slurry for CO2 capture CO2 capture performance and foaming mechanism of modified amine-based absorbents: A study based on molecular dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1