Integrated calcium looping technologies for enhanced CO2 valorisation—A critical review

Priyanka Kumari , Nahla Al Amoodi , Ludovic F. Dumée , Ahmed Al Hajaj
{"title":"Integrated calcium looping technologies for enhanced CO2 valorisation—A critical review","authors":"Priyanka Kumari ,&nbsp;Nahla Al Amoodi ,&nbsp;Ludovic F. Dumée ,&nbsp;Ahmed Al Hajaj","doi":"10.1016/j.ccst.2025.100371","DOIUrl":null,"url":null,"abstract":"<div><div>The calcium looping (CaL) process stands out as a promising technology for carbon dioxide (CO<sub>2</sub>) capture, which exhibits two essential phases: carbonation and calcination. CaL process has several advantages over conventional systems such as availability of abundant and low cost CaO sorbents, reduced environmental impact, lower greenhouse emissions and energy requirements. CaL offers easy and innovative schemes to integrate renewable energy such as concentrated solar power, oxy-fuel and chemical looping process and steam dilution to further enhance the overall efficiency of the system. The review first focuses on summarizing the characteristics and operational parameters of these process integrated CaL facilities while highlighting key experimental findings. The examination of innovative sorbent materials utilized within integrated CaL processes has been addressed, emphasizing pathways directed towards enhancing reaction efficacy, energy conservation, and holistic sustainability attained via process integration and intensification. Meanwhile, strategies to overcome the limitation of CaL process in terms of rapid sintering of sorbent particles over time have also been discussed. Further, the approaches for integrating CaL into industrial plants such as power, cement and steel plants have been identified and compared to realize significant reduction of energy penalty compared to conventional system. The impact of multivariate latent variable (LV) modeling on the integrated CaL process has been examined. Based on the review, CaL showed equivalent or better performance in reducing CO<sub>2</sub> emissions (global warming potential or climate change impact indicator) in comparison to alternative scenarios.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100371"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The calcium looping (CaL) process stands out as a promising technology for carbon dioxide (CO2) capture, which exhibits two essential phases: carbonation and calcination. CaL process has several advantages over conventional systems such as availability of abundant and low cost CaO sorbents, reduced environmental impact, lower greenhouse emissions and energy requirements. CaL offers easy and innovative schemes to integrate renewable energy such as concentrated solar power, oxy-fuel and chemical looping process and steam dilution to further enhance the overall efficiency of the system. The review first focuses on summarizing the characteristics and operational parameters of these process integrated CaL facilities while highlighting key experimental findings. The examination of innovative sorbent materials utilized within integrated CaL processes has been addressed, emphasizing pathways directed towards enhancing reaction efficacy, energy conservation, and holistic sustainability attained via process integration and intensification. Meanwhile, strategies to overcome the limitation of CaL process in terms of rapid sintering of sorbent particles over time have also been discussed. Further, the approaches for integrating CaL into industrial plants such as power, cement and steel plants have been identified and compared to realize significant reduction of energy penalty compared to conventional system. The impact of multivariate latent variable (LV) modeling on the integrated CaL process has been examined. Based on the review, CaL showed equivalent or better performance in reducing CO2 emissions (global warming potential or climate change impact indicator) in comparison to alternative scenarios.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How do CaO/CuO materials evolve in integrated calcium and chemical looping cycles? Recent advances and challenges in solid sorbents for CO2 capture Developing non-aqueous slurry for CO2 capture CO2 capture performance and foaming mechanism of modified amine-based absorbents: A study based on molecular dynamics Sulfur-vulcanized CoFe2O4 with high-efficiency photo-to-thermal conversion for enhanced CO2 reduction and mechanistic insights into selectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1