Low-carbon, hydrogen-rich syngas from sorption-enhanced gasification: A review

Godknows Dziva , Jonas Weitzel , Pengjun Cui , Maxine Yew , Guangchao Ding , Liang Zeng , Songgeng Li
{"title":"Low-carbon, hydrogen-rich syngas from sorption-enhanced gasification: A review","authors":"Godknows Dziva ,&nbsp;Jonas Weitzel ,&nbsp;Pengjun Cui ,&nbsp;Maxine Yew ,&nbsp;Guangchao Ding ,&nbsp;Liang Zeng ,&nbsp;Songgeng Li","doi":"10.1016/j.ccst.2025.100372","DOIUrl":null,"url":null,"abstract":"<div><div>This review aims to provide a comprehensive overview of sorption-enhanced gasification (SEG) with CaO, highlighting its potential as an efficient and sustainable energy conversion technology. SEG integrates dual bed steam gasification with <em>in situ</em> CO<sub>2</sub> removal using CaO, efficiently converting solid carbonaceous fuels such as biomass and low-rank coal into hydrogen-rich (up to 80 vol% H<sub>2</sub>), low-carbon and tar, medium calorific value and nitrogen-free syngas that can be adapted for various downstream applications. The review details the working principle, operating conditions and reaction mechanisms of SEG, emphasizing how these factors influence product distribution. Calcium sorbents are central to the SEG process, so their reactions, catalytic activity and limitations are discussed in this review. Pilot-scale tests are examined to underscore process engineering advancements as well as to highlight scale-up challenges that currently limit the technology to TRL 5–6. Unsustainable long-term sorbent performance and energy penalties from sorbent regeneration and CO<sub>2</sub> capture still need to be addressed through scalable and cost-effective material development and process engineering. This review discusses various process intensification concepts as potential solutions to the inherent shortcomings of SEG. Process systems analyses examined indicate the potential of SEG in hydrogen, synthetic fuel and electricity production, positioning it as a promising technology for decentralized sustainable energy conversion. Furthermore, the review explores the sustainable repurposing and disposal of spent solids to foster circular economies. Overall, this comprehensive review provides crucial insights to further leverage and advance the SEG process, offering a platform for future research and development.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100372"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This review aims to provide a comprehensive overview of sorption-enhanced gasification (SEG) with CaO, highlighting its potential as an efficient and sustainable energy conversion technology. SEG integrates dual bed steam gasification with in situ CO2 removal using CaO, efficiently converting solid carbonaceous fuels such as biomass and low-rank coal into hydrogen-rich (up to 80 vol% H2), low-carbon and tar, medium calorific value and nitrogen-free syngas that can be adapted for various downstream applications. The review details the working principle, operating conditions and reaction mechanisms of SEG, emphasizing how these factors influence product distribution. Calcium sorbents are central to the SEG process, so their reactions, catalytic activity and limitations are discussed in this review. Pilot-scale tests are examined to underscore process engineering advancements as well as to highlight scale-up challenges that currently limit the technology to TRL 5–6. Unsustainable long-term sorbent performance and energy penalties from sorbent regeneration and CO2 capture still need to be addressed through scalable and cost-effective material development and process engineering. This review discusses various process intensification concepts as potential solutions to the inherent shortcomings of SEG. Process systems analyses examined indicate the potential of SEG in hydrogen, synthetic fuel and electricity production, positioning it as a promising technology for decentralized sustainable energy conversion. Furthermore, the review explores the sustainable repurposing and disposal of spent solids to foster circular economies. Overall, this comprehensive review provides crucial insights to further leverage and advance the SEG process, offering a platform for future research and development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How do CaO/CuO materials evolve in integrated calcium and chemical looping cycles? Recent advances and challenges in solid sorbents for CO2 capture Towards net-zero in steel production: Process simulation and environmental impacts of carbon capture, storage and utilisation of blast furnace gas Developing non-aqueous slurry for CO2 capture CO2 capture performance and foaming mechanism of modified amine-based absorbents: A study based on molecular dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1