Complete genome sequence of Alteromonas marina OM2201, a marine bacterium degrading Ulva prolifera polysaccharides isolated from surface of the Yellow Sea

IF 1.3 4区 生物学 Q4 GENETICS & HEREDITY Marine genomics Pub Date : 2025-01-25 DOI:10.1016/j.margen.2025.101168
Shi-Ning Cai , Hai-Xia Zhu , Zhi-Gang Tang , Xue-Yun Geng , Mei-Ling Sun
{"title":"Complete genome sequence of Alteromonas marina OM2201, a marine bacterium degrading Ulva prolifera polysaccharides isolated from surface of the Yellow Sea","authors":"Shi-Ning Cai ,&nbsp;Hai-Xia Zhu ,&nbsp;Zhi-Gang Tang ,&nbsp;Xue-Yun Geng ,&nbsp;Mei-Ling Sun","doi":"10.1016/j.margen.2025.101168","DOIUrl":null,"url":null,"abstract":"<div><div>As a consequence of marine eutrophication, there has been an exponential growth of <em>Ulva prolifera</em>, culminating in the yearly emergence of a massive green tide along the shores of Qingdao. This phenomenon exerts a detrimental impact on the marine ecosystem. As reported, the expression level of <em>Alteromonas</em> enzymes involved in <em>U. prolifera</em> polysaccharides degradation is increased during the green tide outbreak period, potentially accelerating the breakdown of <em>U. prolifera</em> biomass. This enhanced degradation could facilitate the transition to the waning phase of the green tide event. In this study, strain <em>Alteromonas marina</em> OM2201 was isolated from seawater samples taken during an <em>U. prolifera</em> bloom in the coastal waters of Qingdao. Its genome contains a ring chromosome and two plasmids. The length of the circular chromosome was 4,489,073 bp with GC content of 44.21 mol%, and the length of plasmid 1 was 233,636 bp with GC content of 42.24 mol%, and the length of plasmid 2 was 5594 bp with GC content of 39.61 mol%. Genomic analysis showed that <em>Alteromonas marina</em> OM2201 contained a variety of ulvan lyase genes, indicating that it could promote the degradation of <em>U. prolifera</em> polysaccharides. This genetic makeup potentially enables the strain to expedite the decomposition of <em>U. prolifera</em> biomass. Therefore, this study broadens our understanding of the <em>Alteromonas</em> bacteria that can degrade <em>U. prolifera</em> polysaccharides during the outbreak period.</div></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":"80 ","pages":"Article 101168"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778725000042","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

As a consequence of marine eutrophication, there has been an exponential growth of Ulva prolifera, culminating in the yearly emergence of a massive green tide along the shores of Qingdao. This phenomenon exerts a detrimental impact on the marine ecosystem. As reported, the expression level of Alteromonas enzymes involved in U. prolifera polysaccharides degradation is increased during the green tide outbreak period, potentially accelerating the breakdown of U. prolifera biomass. This enhanced degradation could facilitate the transition to the waning phase of the green tide event. In this study, strain Alteromonas marina OM2201 was isolated from seawater samples taken during an U. prolifera bloom in the coastal waters of Qingdao. Its genome contains a ring chromosome and two plasmids. The length of the circular chromosome was 4,489,073 bp with GC content of 44.21 mol%, and the length of plasmid 1 was 233,636 bp with GC content of 42.24 mol%, and the length of plasmid 2 was 5594 bp with GC content of 39.61 mol%. Genomic analysis showed that Alteromonas marina OM2201 contained a variety of ulvan lyase genes, indicating that it could promote the degradation of U. prolifera polysaccharides. This genetic makeup potentially enables the strain to expedite the decomposition of U. prolifera biomass. Therefore, this study broadens our understanding of the Alteromonas bacteria that can degrade U. prolifera polysaccharides during the outbreak period.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine genomics
Marine genomics 生物-遗传学
CiteScore
3.60
自引率
5.30%
发文量
50
审稿时长
29 days
期刊介绍: The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include: • Population genomics and ecology • Evolutionary and developmental genomics • Comparative genomics • Metagenomics • Environmental genomics • Systems biology More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.
期刊最新文献
Editorial Board A “light in the darkness”: First transcriptomic data from deep-sea spiny eels (Notacanthus, Notacanthiformes) Genomic analysis of Vibrio sp. D3 reveals its role in marine sulfur cycling Genomic insights into Marinobacterium sediminicola CGMCC 1.7287T: A polyhydroxyalkanoate-producing bacterium isolated from marine sediment Genomics analysis of Vreelandella piezotolerans V23 reveals its role in D-amino acids metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1