Genomics analysis of Vreelandella piezotolerans V23 reveals its role in D-amino acids metabolism

IF 1.3 4区 生物学 Q4 GENETICS & HEREDITY Marine genomics Pub Date : 2025-02-12 DOI:10.1016/j.margen.2025.101179
Dan Liu, Tie-Ji Gu, Hou-Qi Wang, Ze-Kun Liu, Meng-Qi Wang, Jing-Li Lü, Xin-Yi Wang, Peng Wang, Chen Wang
{"title":"Genomics analysis of Vreelandella piezotolerans V23 reveals its role in D-amino acids metabolism","authors":"Dan Liu,&nbsp;Tie-Ji Gu,&nbsp;Hou-Qi Wang,&nbsp;Ze-Kun Liu,&nbsp;Meng-Qi Wang,&nbsp;Jing-Li Lü,&nbsp;Xin-Yi Wang,&nbsp;Peng Wang,&nbsp;Chen Wang","doi":"10.1016/j.margen.2025.101179","DOIUrl":null,"url":null,"abstract":"<div><div>D-amino acids are generally supposed to be unique metabolites existing only in bacteria. They can not only modify the bacterial cell wall and promote plant growth, but also participate in the immune regulation of mammals, which is of great significance in nature. <em>Vreelandella piezotolerans</em> V23, a Gram-negative and aerobic bacterium, was isolated from coastal seawater of the Yellow Sea, China. Here, we report the genome of strain V23 and its genomic characteristics to utilize D-amino acids. The genome of strain V23 consists of a single circular chromosome with a size of 3,926,051 bp and a GC content of 58.11 %. Genomic analysis revealed that strain V23 possessed various genes responsible for D-amino acids metabolism and a pathway of synthesizing peptidoglycan from D-amino acids. The results indicated that strain V23 has the capacity to utilize D-amino acids. And strain V23 has been confirmed to be able to grow up with different D-amino acids as the sole nitrogen source. This study also enhances our understanding of the physiological and metabolic characteristics, interspecific diversity of strains of <em>Vreelandella</em> genus, and provides a crucial foundation for further investigation of D-amino acids metabolism.</div></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":"80 ","pages":"Article 101179"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778725000157","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

D-amino acids are generally supposed to be unique metabolites existing only in bacteria. They can not only modify the bacterial cell wall and promote plant growth, but also participate in the immune regulation of mammals, which is of great significance in nature. Vreelandella piezotolerans V23, a Gram-negative and aerobic bacterium, was isolated from coastal seawater of the Yellow Sea, China. Here, we report the genome of strain V23 and its genomic characteristics to utilize D-amino acids. The genome of strain V23 consists of a single circular chromosome with a size of 3,926,051 bp and a GC content of 58.11 %. Genomic analysis revealed that strain V23 possessed various genes responsible for D-amino acids metabolism and a pathway of synthesizing peptidoglycan from D-amino acids. The results indicated that strain V23 has the capacity to utilize D-amino acids. And strain V23 has been confirmed to be able to grow up with different D-amino acids as the sole nitrogen source. This study also enhances our understanding of the physiological and metabolic characteristics, interspecific diversity of strains of Vreelandella genus, and provides a crucial foundation for further investigation of D-amino acids metabolism.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine genomics
Marine genomics 生物-遗传学
CiteScore
3.60
自引率
5.30%
发文量
50
审稿时长
29 days
期刊介绍: The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include: • Population genomics and ecology • Evolutionary and developmental genomics • Comparative genomics • Metagenomics • Environmental genomics • Systems biology More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.
期刊最新文献
Genomic analysis of Vibrio sp. D3 reveals its role in marine sulfur cycling Genomic insights into Marinobacterium sediminicola CGMCC 1.7287T: A polyhydroxyalkanoate-producing bacterium isolated from marine sediment Genomics analysis of Vreelandella piezotolerans V23 reveals its role in D-amino acids metabolism Genomic analysis of Marinobacter flavimaris ZYH30 reveals its role in marine dimethylsulfide cycling Complete genome sequence of Alteromonas marina OM2201, a marine bacterium degrading Ulva prolifera polysaccharides isolated from surface of the Yellow Sea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1