High-sensitivity detection in biosensors: A comparative study of inverted T- and L-channel charge plasma TFETs

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2025-02-01 DOI:10.1016/j.micrna.2024.208060
Siva Rama Krishna Gorla, Chandan Kumar Pandey
{"title":"High-sensitivity detection in biosensors: A comparative study of inverted T- and L-channel charge plasma TFETs","authors":"Siva Rama Krishna Gorla,&nbsp;Chandan Kumar Pandey","doi":"10.1016/j.micrna.2024.208060","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a comprehensive analysis of a charge plasma vertical TFET based biosensor with an inverted T-shaped channel (IT-CPTFET), demonstrating improved sensitivity in biomolecules detection compared to the conventional L-shaped CPTFET based biosensor (L-CPTFET). Key design considerations include dual cavity positions, split drain region, dual-channel arrangement, and elevated source positions to optimize tunneling rates, resulting in increased drain current and improved sensitivity of the IT-CPTFET. Both IT-CPTFET and L-CPTFET have been explored as label-free biosensors using dielectric modulation, incorporating a nanocavity under the source electrode. By measuring important DC parameters like ON-state current <span><math><mrow><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>N</mi></mrow></msub><mo>)</mo></mrow></math></span>, subthreshold swing <span><math><mrow><mo>(</mo><mi>S</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>A</mi><mi>v</mi><mi>g</mi></mrow></msub><mo>)</mo></mrow></math></span>, and current-switching ratio (CSR) with the aid of 2D Sentaurus TCAD simulator at different K-values (1.54, 3.57, 6.3, 8, 12) helps to investigate the physics of IT-CPTFET, L-CPTFET and assess their ability to identify various charged and neutral biomolecules. The IT-CPTFET shows superior sensitivity, achieving an <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>N</mi></mrow></msub></math></span> sensitivity of <span><math><mrow><mn>1</mn><mo>.</mo><mn>18</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span>, compared to <span><math><mrow><mn>5</mn><mo>.</mo><mn>38</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>7</mn></mrow></msup></mrow></math></span> for the L-CPTFET when detecting Gelatin (K = 12). An increase in the dielectric constant enhances the electric field in the tunneling region, leading to more efficient band-to-band tunneling, which increases the drain current and improves the overall sensitivity of the device. Furthermore, the sensitivity of the device is evaluated with respect to analog and RF parameters that are crucial for practical sensing applications. However, IT-CPTFET offers better performance, demonstrating <span><math><mrow><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> for transconductance sensitivity (<span><math><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></msub></math></span>) and <span><math><mrow><mn>3</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> for cut-off frequency sensitivity (<span><math><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></msub></math></span>), while the L-CPTFET shows <span><math><mrow><mn>4</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>, respectively. Next, the sensitivity of devices with partially filled nanogaps, having fill-factors (FF) of 40% and 60%, affected by steric hindrance, is also evaluated for IT-CPTFET and L-CPTFET biosensors at <span><math><mrow><mi>K</mi><mo>=</mo><mn>12</mn></mrow></math></span>. This analysis includes different step profiles of biomolecules such as concave, convex, increasing, and decreasing step profiles. To account for the non-ideal state of IT-CPTFET based biosensors, the impact of irregular probe placement within the nano-cavity on sensitivity parameters related to ON-state current for a specific values of biomolecules is also analyzed using the TCAD simulator. Finally, Comparison with other CP-TFET biosensors highlights the superior performance and sensitivity of the IT-CPTFET in detecting a variety of biomolecules, making it a good candidate for high-sensitivity biosensing applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"198 ","pages":"Article 208060"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324003108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a comprehensive analysis of a charge plasma vertical TFET based biosensor with an inverted T-shaped channel (IT-CPTFET), demonstrating improved sensitivity in biomolecules detection compared to the conventional L-shaped CPTFET based biosensor (L-CPTFET). Key design considerations include dual cavity positions, split drain region, dual-channel arrangement, and elevated source positions to optimize tunneling rates, resulting in increased drain current and improved sensitivity of the IT-CPTFET. Both IT-CPTFET and L-CPTFET have been explored as label-free biosensors using dielectric modulation, incorporating a nanocavity under the source electrode. By measuring important DC parameters like ON-state current (ION), subthreshold swing (SSAvg), and current-switching ratio (CSR) with the aid of 2D Sentaurus TCAD simulator at different K-values (1.54, 3.57, 6.3, 8, 12) helps to investigate the physics of IT-CPTFET, L-CPTFET and assess their ability to identify various charged and neutral biomolecules. The IT-CPTFET shows superior sensitivity, achieving an ION sensitivity of 1.18×108, compared to 5.38×107 for the L-CPTFET when detecting Gelatin (K = 12). An increase in the dielectric constant enhances the electric field in the tunneling region, leading to more efficient band-to-band tunneling, which increases the drain current and improves the overall sensitivity of the device. Furthermore, the sensitivity of the device is evaluated with respect to analog and RF parameters that are crucial for practical sensing applications. However, IT-CPTFET offers better performance, demonstrating 1.9×106 for transconductance sensitivity (Sgm) and 3.8×105 for cut-off frequency sensitivity (SfT), while the L-CPTFET shows 4.9×105 and 1.3×105, respectively. Next, the sensitivity of devices with partially filled nanogaps, having fill-factors (FF) of 40% and 60%, affected by steric hindrance, is also evaluated for IT-CPTFET and L-CPTFET biosensors at K=12. This analysis includes different step profiles of biomolecules such as concave, convex, increasing, and decreasing step profiles. To account for the non-ideal state of IT-CPTFET based biosensors, the impact of irregular probe placement within the nano-cavity on sensitivity parameters related to ON-state current for a specific values of biomolecules is also analyzed using the TCAD simulator. Finally, Comparison with other CP-TFET biosensors highlights the superior performance and sensitivity of the IT-CPTFET in detecting a variety of biomolecules, making it a good candidate for high-sensitivity biosensing applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
DFT based study to sense harmful gases (NH3, AsH3, BF3, BCl3) using Scandium Nitride monolayer for sensing device applications Fabrication of bifunctional counter electrode materials for quantum dot sensitized solar cells by using rGO/1T-MoS2 nano composite ZnO/MgO Schottky ultraviolet photodetector with high on/off ratio A novel p-GaN HEMT with superjunction silicon substrate for improved current collapse Recent advancements in high efficiency deep blue organic light emitting diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1