S. Sreejith , J. Ajayan , N.V. Uma Reddy , M. Manikandan , S. Umamaheswaran , N.V. Raghavendra Reddy
{"title":"Recent advancements in high efficiency deep blue organic light emitting diodes","authors":"S. Sreejith , J. Ajayan , N.V. Uma Reddy , M. Manikandan , S. Umamaheswaran , N.V. Raghavendra Reddy","doi":"10.1016/j.micrna.2025.208101","DOIUrl":null,"url":null,"abstract":"<div><div>OLEDs (organic LEDs) are thought to be the most competitive alternative for next-generation transparent and flexible displays. Due to its unique characteristics, which include enhanced efficiency, lesser cost, ease of processing, and flexibility, OLEDs have drawn a lot of attention and have already been put to use in flat-panel full-colour displays and in systems of solid lighting-state. Solid-state-lighting and full-colour displays both benefit greatly from the use of efficient blue OLEDs. Deep blue (DB) emitting substances, in particular, not just serve as a donor of energy for low-energy dopants to create green, white and red, but they also improve the colour spectrum and lower the amount of power used. However, low efficiency and limited working lifetime of DB-OLEDs limit their suitability for commercial use in comparison to green & red-light OLEDs. Because of their inherent large band-gap, DB materials continue to lag significantly behind green & red organic emitters in terms of quantum-efficiency (QE), colour quality, and charge mobility, making the creation of extremely effective DB fluorescent substances an urgent and challenging research topic. This review article examines the structural designs and materials used in DB-OLED fabrication that enhance their efficiency and stability along with the challenges in their fabrication, and their future application prospects.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"200 ","pages":"Article 208101"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
OLEDs (organic LEDs) are thought to be the most competitive alternative for next-generation transparent and flexible displays. Due to its unique characteristics, which include enhanced efficiency, lesser cost, ease of processing, and flexibility, OLEDs have drawn a lot of attention and have already been put to use in flat-panel full-colour displays and in systems of solid lighting-state. Solid-state-lighting and full-colour displays both benefit greatly from the use of efficient blue OLEDs. Deep blue (DB) emitting substances, in particular, not just serve as a donor of energy for low-energy dopants to create green, white and red, but they also improve the colour spectrum and lower the amount of power used. However, low efficiency and limited working lifetime of DB-OLEDs limit their suitability for commercial use in comparison to green & red-light OLEDs. Because of their inherent large band-gap, DB materials continue to lag significantly behind green & red organic emitters in terms of quantum-efficiency (QE), colour quality, and charge mobility, making the creation of extremely effective DB fluorescent substances an urgent and challenging research topic. This review article examines the structural designs and materials used in DB-OLED fabrication that enhance their efficiency and stability along with the challenges in their fabrication, and their future application prospects.