{"title":"Oxygen evolution reaction mechanism on platinum dioxide surfaces based on density functional theory calculations","authors":"Xiru Cao, Zhibin Tan, Chen Ji, Changwei Pan","doi":"10.1016/j.comptc.2024.115020","DOIUrl":null,"url":null,"abstract":"<div><div>The oxygen evolution reaction (OER) counterbalances the hydrogen evolution reaction (HER) during water dissociation under an electric field. Platinum (Pt) group metals and their oxides exhibit considerable durability as electrocatalysts for water dissociation. However, an atomic-level understanding of the OER on Pt-oxide surfaces at high potential remains elusive because of the limited experimental techniques for tracking dynamic surface species involved in adsorption, electron transfer, or interactions. Herein, the OER mechanisms involving water nucleophilic attack (WNA) and intramolecular oxygen coupling (IMOC) were studied on Pt and platinum dioxide (PtO<sub>2</sub>) surfaces using density functional theory (DFT) calculations, indicating that the WNA mechanism dominates the OER on Pt and PtO<sub>2</sub> electrode surfaces. The OER activity on the PtO<sub>2</sub>(100) surface is better than the PtO<sub>2</sub>(111) surface due to the high overpotential obtained on PtO<sub>2</sub>(111). These findings offer valuable insights into the OER mechanism on oxidized Pt surfaces and suggest new strategies for designing and optimizing Pt-based catalysts for improved stability and performance.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1244 ","pages":"Article 115020"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24005590","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The oxygen evolution reaction (OER) counterbalances the hydrogen evolution reaction (HER) during water dissociation under an electric field. Platinum (Pt) group metals and their oxides exhibit considerable durability as electrocatalysts for water dissociation. However, an atomic-level understanding of the OER on Pt-oxide surfaces at high potential remains elusive because of the limited experimental techniques for tracking dynamic surface species involved in adsorption, electron transfer, or interactions. Herein, the OER mechanisms involving water nucleophilic attack (WNA) and intramolecular oxygen coupling (IMOC) were studied on Pt and platinum dioxide (PtO2) surfaces using density functional theory (DFT) calculations, indicating that the WNA mechanism dominates the OER on Pt and PtO2 electrode surfaces. The OER activity on the PtO2(100) surface is better than the PtO2(111) surface due to the high overpotential obtained on PtO2(111). These findings offer valuable insights into the OER mechanism on oxidized Pt surfaces and suggest new strategies for designing and optimizing Pt-based catalysts for improved stability and performance.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.