Design of a computational intelligence system for detection of multiple sclerosis with visual evoked potentials

Moussa Mohsenpourian , Amir Abolfazl Suratgar , Heidar Ali Talebi , Mahsa Arzani , Abdorreza Naser Moghadasi , Seyed Matin Malakouti , Mohammad Bagher Menhaj
{"title":"Design of a computational intelligence system for detection of multiple sclerosis with visual evoked potentials","authors":"Moussa Mohsenpourian ,&nbsp;Amir Abolfazl Suratgar ,&nbsp;Heidar Ali Talebi ,&nbsp;Mahsa Arzani ,&nbsp;Abdorreza Naser Moghadasi ,&nbsp;Seyed Matin Malakouti ,&nbsp;Mohammad Bagher Menhaj","doi":"10.1016/j.neuri.2024.100177","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a new approach for modification of membership functions of a fuzzy inference system (FIS) is demonstrated, in order to serve as a pattern recognition tool for classification of patients diagnosed with multiple sclerosis (MS) from healthy controls (HC) using their visually evoked potential (VEP) recordings. The new approach utilizes Krill Herd (KH) optimization algorithm to modify parameters associated with membership functions of both inputs and outputs of an initial Sugeno-type FIS, while making sure that the error corresponding to training of the network is minimized.</div><div>This novel pattern recognition system is applied for classification of VEP signals in 11 MS patients and 11 HC's. A feature extraction routine was performed on the VEP signals, and later substantial features were selected in an optimized feature subset selection scheme employing Ant Colony Optimization (ACO) and Simulated Annealing (SA) algorithms. This alone provided further information regarding clinical value of many previously unused VEP features as an aide for making the diagnosis. The newly designed computational intelligence system is shown to outperform popular classifiers (e.g., multilayer perceptron, support-vector machine, etc.) and was able to distinguish MS patients from HC's with an overall accuracy of 90%.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 1","pages":"Article 100177"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528624000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a new approach for modification of membership functions of a fuzzy inference system (FIS) is demonstrated, in order to serve as a pattern recognition tool for classification of patients diagnosed with multiple sclerosis (MS) from healthy controls (HC) using their visually evoked potential (VEP) recordings. The new approach utilizes Krill Herd (KH) optimization algorithm to modify parameters associated with membership functions of both inputs and outputs of an initial Sugeno-type FIS, while making sure that the error corresponding to training of the network is minimized.
This novel pattern recognition system is applied for classification of VEP signals in 11 MS patients and 11 HC's. A feature extraction routine was performed on the VEP signals, and later substantial features were selected in an optimized feature subset selection scheme employing Ant Colony Optimization (ACO) and Simulated Annealing (SA) algorithms. This alone provided further information regarding clinical value of many previously unused VEP features as an aide for making the diagnosis. The newly designed computational intelligence system is shown to outperform popular classifiers (e.g., multilayer perceptron, support-vector machine, etc.) and was able to distinguish MS patients from HC's with an overall accuracy of 90%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
期刊最新文献
Feature fusion based deep learning model for Alzheimer's neurological disorder classification Non-invasive brain stimulation-based sleep stage classification using transcranial infrared based electrocardiogram Analysis and development of clinically recorded dysarthric speech corpus for patients affected with various stroke conditions Integration of software-based cognitive approaches and brain-like computer machinery for efficient cognitive computing Bayesian Inference General Procedures for A Single-subject Test study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1