In-situ electrochemical fabrication of holey graphene oxide and oxo-functionalized graphene for electrochemical sensing

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2025-01-01 DOI:10.1016/j.cartre.2024.100447
Gang Li , Ming Qin , Qiang Zhang , Baiqing Yuan , Lanxin Xue , Shuning Zhang , Jingfei Yan , Chunying Xu
{"title":"In-situ electrochemical fabrication of holey graphene oxide and oxo-functionalized graphene for electrochemical sensing","authors":"Gang Li ,&nbsp;Ming Qin ,&nbsp;Qiang Zhang ,&nbsp;Baiqing Yuan ,&nbsp;Lanxin Xue ,&nbsp;Shuning Zhang ,&nbsp;Jingfei Yan ,&nbsp;Chunying Xu","doi":"10.1016/j.cartre.2024.100447","DOIUrl":null,"url":null,"abstract":"<div><div>The in-situ electrochemical generation method streamlines the synthesis of active materials directly onto the electrode surface, which enhances the electrical connection and minimizes interface resistance. This approach not only simplifies the modification process but also significantly enhances signal stability and reproducibility in electrochemical sensing. Here, holey graphene oxide and oxo-functionalized graphene were in-situ generated by an electrochemical method in a green and mild solution. The active interfaces were explored for the electrochemical sensing of dopamine, ascorbic acid and uric acid, focusing on electroactivity, antifouling, selectivity, and background noise. Findings reveal the crucial role of oxo-functional groups and defects at the interfaces in determining the sensor's performance, highlighting a trade-off between high sensitivity and antifouling capability/selectivity.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"18 ","pages":"Article 100447"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924001263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The in-situ electrochemical generation method streamlines the synthesis of active materials directly onto the electrode surface, which enhances the electrical connection and minimizes interface resistance. This approach not only simplifies the modification process but also significantly enhances signal stability and reproducibility in electrochemical sensing. Here, holey graphene oxide and oxo-functionalized graphene were in-situ generated by an electrochemical method in a green and mild solution. The active interfaces were explored for the electrochemical sensing of dopamine, ascorbic acid and uric acid, focusing on electroactivity, antifouling, selectivity, and background noise. Findings reveal the crucial role of oxo-functional groups and defects at the interfaces in determining the sensor's performance, highlighting a trade-off between high sensitivity and antifouling capability/selectivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Electrospun polyvinylpyrrolidone fibers with cobalt ferrite nanoparticles Distinguishing physical vs. chemical templating mechanisms for inducing graphitization in novolac matrix Effect of a bimetal Mn/Zn catalyst supported on activated carbon for selective oxidation of ethyl lactate to ethyl pyruvate Experimental evidence of flexural phonons in low-temperature heat capacity of carbon nanotubes Recent application of carbon nanotubes in energy storage and conversion devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1