{"title":"Efficient multi-GPU implementation of a moving boundary approach in rotor flow simulation using LBM and level-set method","authors":"Xiangcheng Sun, Xian Wang","doi":"10.1016/j.cpc.2024.109469","DOIUrl":null,"url":null,"abstract":"<div><div>Moving boundary recognition exists widely in the numerical simulation of motion problems in fluid mechanics engineering. Particularly, in rotating machinery flows simulations, a method for handling moving boundaries with high-resolution grids, high computational performance, and efficient implementation on high-performance computing systems is crucial. Based on an in-house lattice Boltzmann method (LBM) solver, this study has developed a moving boundary approach suitable for simulating three-dimensional rotating flows. This method couples a multi-block grid method for local grid refinement and utilizes the level-set method for accurately capturing moving solid boundaries. Moreover, the implementation has been successfully carried out on a desktop-level multi-graphics processing unit (GPU) parallel system. The results show that adjusting the number of GPUs enables flexible scaling of the computational domain size, making this method particularly well-suited for large computational domains in rotating flow problems. Furthermore, the detailed evaluation of parallel GPU performance reveals that the computational performance with nine GPUs in parallel at maximum grid size is 2.33 times greater than that with three GPUs in parallel. Additionally, when the grid size per GPU varies, both kernel functions time and communication time significantly impact performance. The optimized data transfer strategy helps to minimize interpolation overhead and avoid additional communication overhead associated with multi-block grid refinement. The test results show a maximum MLUPS performance of 3074.85 with three V100 GPUs in parallel. Finally, the simulations of flow over three rotor configurations indicate that the proposed implementation accurately identifies rotating motion boundaries and can be applied in real-world rotor flow simulations.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"308 ","pages":"Article 109469"},"PeriodicalIF":7.2000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524003928","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Moving boundary recognition exists widely in the numerical simulation of motion problems in fluid mechanics engineering. Particularly, in rotating machinery flows simulations, a method for handling moving boundaries with high-resolution grids, high computational performance, and efficient implementation on high-performance computing systems is crucial. Based on an in-house lattice Boltzmann method (LBM) solver, this study has developed a moving boundary approach suitable for simulating three-dimensional rotating flows. This method couples a multi-block grid method for local grid refinement and utilizes the level-set method for accurately capturing moving solid boundaries. Moreover, the implementation has been successfully carried out on a desktop-level multi-graphics processing unit (GPU) parallel system. The results show that adjusting the number of GPUs enables flexible scaling of the computational domain size, making this method particularly well-suited for large computational domains in rotating flow problems. Furthermore, the detailed evaluation of parallel GPU performance reveals that the computational performance with nine GPUs in parallel at maximum grid size is 2.33 times greater than that with three GPUs in parallel. Additionally, when the grid size per GPU varies, both kernel functions time and communication time significantly impact performance. The optimized data transfer strategy helps to minimize interpolation overhead and avoid additional communication overhead associated with multi-block grid refinement. The test results show a maximum MLUPS performance of 3074.85 with three V100 GPUs in parallel. Finally, the simulations of flow over three rotor configurations indicate that the proposed implementation accurately identifies rotating motion boundaries and can be applied in real-world rotor flow simulations.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.