Semi-supervised pre-training based multi-task network for thyroid-associated ophthalmopathy classification

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Displays Pub Date : 2025-02-01 DOI:10.1016/j.displa.2025.102974
MingFei Yang , TianFeng Zhang , XueFei Song , YuZhong Zhang , Lei Zhou
{"title":"Semi-supervised pre-training based multi-task network for thyroid-associated ophthalmopathy classification","authors":"MingFei Yang ,&nbsp;TianFeng Zhang ,&nbsp;XueFei Song ,&nbsp;YuZhong Zhang ,&nbsp;Lei Zhou","doi":"10.1016/j.displa.2025.102974","DOIUrl":null,"url":null,"abstract":"<div><div>Thyroid-associated ophthalmopathy (TAO) is a blinding autoimmune disorder, and early diagnosis is crucial in preventing vision loss. Orbital CT imaging has emerged as a valuable tool for diagnosing and screening TAO. Radiomic is currently the most dominant technique for TAO diagnosis, however it is costly due to the need for manual image labeling by medical professionals. Convolutional Neural Network (CNN) is another promising technique for TAO diagnosis. However, the performance of CNN based classification may degrade due to the limited size of collected data or the complexity of designed model. Utilizing pretraining model is a crucial technique for boosting the performance of CNN based TAO classification. Therefore, a novel semi-supervised pretraining based multi-task network for TAO classification is proposed in this paper. Firstly, a multi-task network is designed, which consists of an encoder, a classification branch and two segmentation decoder. Then, the multi-task network is pretrained by minimizing the prediction difference between two segmentation decoders through a semi-supervised way. In this way, the pseudo voxel-level supervision can be generated for the unlabeled images. Finally, the encoder and one light-weighted decoder can be initialized by the pretrained weights, and then they are jointly optimized for TAO classification with the classification branch through multi-task learning. Our proposed network model was comprehensively evaluated on a private dataset which consists of 982 orbital CT scans for TAO diagnosis. We also tested the classification generalization performance using an external dataset. The experimental results demonstrate that our model significantly improves the classification performance when compared with current SOTA methods. The source code is publically available at <span><span>https://github.com/VLAD-KONATA/TAO_CT</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"87 ","pages":"Article 102974"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000113","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Thyroid-associated ophthalmopathy (TAO) is a blinding autoimmune disorder, and early diagnosis is crucial in preventing vision loss. Orbital CT imaging has emerged as a valuable tool for diagnosing and screening TAO. Radiomic is currently the most dominant technique for TAO diagnosis, however it is costly due to the need for manual image labeling by medical professionals. Convolutional Neural Network (CNN) is another promising technique for TAO diagnosis. However, the performance of CNN based classification may degrade due to the limited size of collected data or the complexity of designed model. Utilizing pretraining model is a crucial technique for boosting the performance of CNN based TAO classification. Therefore, a novel semi-supervised pretraining based multi-task network for TAO classification is proposed in this paper. Firstly, a multi-task network is designed, which consists of an encoder, a classification branch and two segmentation decoder. Then, the multi-task network is pretrained by minimizing the prediction difference between two segmentation decoders through a semi-supervised way. In this way, the pseudo voxel-level supervision can be generated for the unlabeled images. Finally, the encoder and one light-weighted decoder can be initialized by the pretrained weights, and then they are jointly optimized for TAO classification with the classification branch through multi-task learning. Our proposed network model was comprehensively evaluated on a private dataset which consists of 982 orbital CT scans for TAO diagnosis. We also tested the classification generalization performance using an external dataset. The experimental results demonstrate that our model significantly improves the classification performance when compared with current SOTA methods. The source code is publically available at https://github.com/VLAD-KONATA/TAO_CT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
期刊最新文献
High-precision 3D teeth reconstruction based on five-view intra-oral photos Stacked neural filtering network for reliable NEV monitoring Semi-supervised pre-training based multi-task network for thyroid-associated ophthalmopathy classification Design methodology and evaluation of multimodal interaction for enhancing driving safety and experience in secondary tasks of IVIS Human pose estimation via inter-view image similarity with adaptive weights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1