High-precision 3D teeth reconstruction based on five-view intra-oral photos

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Displays Pub Date : 2025-02-03 DOI:10.1016/j.displa.2025.102988
Yanqi Wang , Xinyue Sun , Jun Jia , Zuolin Jin , Yanning Ma
{"title":"High-precision 3D teeth reconstruction based on five-view intra-oral photos","authors":"Yanqi Wang ,&nbsp;Xinyue Sun ,&nbsp;Jun Jia ,&nbsp;Zuolin Jin ,&nbsp;Yanning Ma","doi":"10.1016/j.displa.2025.102988","DOIUrl":null,"url":null,"abstract":"<div><div>Reconstructing 3D dental model from multi-view intra-oral photos plays an important role in the process of orthodontic treatment. Compared with cone-beam computed tomography (CBCT) or intra-oral scanner (IOS), 3D reconstruction provides a low-cost solution to monitor teeth, which does not require professional devices and operations. This paper introduces an enhanced fully automated framework for 3D tooth reconstruction using five-view intraoral photos, capable of automatically generating the shapes, alignments, and occlusal relationships of both upper and lower teeth. The proposed framework includes three phases. Initially, a parametric dental model based on a statistical shape is built to represent the shape and position of each tooth. Next, in the feature extraction stage, the segment anything model (SAM) is used to accurately detect the tooth boundaries from intra-oral photos, and the single-view depth estimation approach known as Depth Anything is used to obtain depth information. And grayscale conversion and normalization processing are performed on the photos to extract luminance information separately in order to deal with the problem of tooth surface reflection. Finally, an iterative reconstruction process in two stages is implemented: the first stage involves alternating between searching for point correspondences and optimizing a composite loss function to align the parameterized tooth model with the predicted contours of teeth; in the second stage, image depth and lightness information are utilized for additional refinement. Extensive experiments are conducted to validate the proposed methods. Compared with existing methods, the proposed method not only qualitatively outperforms in misaligned, missing, or complex occlusion cases, but also quantificationally achieve good RMSD and Dice.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"87 ","pages":"Article 102988"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000253","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Reconstructing 3D dental model from multi-view intra-oral photos plays an important role in the process of orthodontic treatment. Compared with cone-beam computed tomography (CBCT) or intra-oral scanner (IOS), 3D reconstruction provides a low-cost solution to monitor teeth, which does not require professional devices and operations. This paper introduces an enhanced fully automated framework for 3D tooth reconstruction using five-view intraoral photos, capable of automatically generating the shapes, alignments, and occlusal relationships of both upper and lower teeth. The proposed framework includes three phases. Initially, a parametric dental model based on a statistical shape is built to represent the shape and position of each tooth. Next, in the feature extraction stage, the segment anything model (SAM) is used to accurately detect the tooth boundaries from intra-oral photos, and the single-view depth estimation approach known as Depth Anything is used to obtain depth information. And grayscale conversion and normalization processing are performed on the photos to extract luminance information separately in order to deal with the problem of tooth surface reflection. Finally, an iterative reconstruction process in two stages is implemented: the first stage involves alternating between searching for point correspondences and optimizing a composite loss function to align the parameterized tooth model with the predicted contours of teeth; in the second stage, image depth and lightness information are utilized for additional refinement. Extensive experiments are conducted to validate the proposed methods. Compared with existing methods, the proposed method not only qualitatively outperforms in misaligned, missing, or complex occlusion cases, but also quantificationally achieve good RMSD and Dice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
期刊最新文献
Refactored Maskformer: Refactor localization and classification for improved universal image segmentation UnSP: Improving event-to-image reconstruction with uncertainty guided self-paced learning Chinese sign language recognition and translation with virtual digital human dataset Exploring user engagement by diagnosing visual guides in onboarding screens with linear regression and XGBoost High-precision 3D teeth reconstruction based on five-view intra-oral photos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1