Advancements in hazardous gases detection: Using dual structures of photonic crystal fiber-based sensor

IF 5.4 Q1 CHEMISTRY, ANALYTICAL Sensing and Bio-Sensing Research Pub Date : 2025-02-01 DOI:10.1016/j.sbsr.2025.100738
Pratishtha Pandey , Sapana Yadav , Adarsh Chandra Mishra , D.K. Dwivedi , Pooja Lohia , R.K. Yadav , Upendra Kulshrestha , Vipin Kumar , Prabhu Paramasivam , R. Bousbih , M. Khalid Hossain
{"title":"Advancements in hazardous gases detection: Using dual structures of photonic crystal fiber-based sensor","authors":"Pratishtha Pandey ,&nbsp;Sapana Yadav ,&nbsp;Adarsh Chandra Mishra ,&nbsp;D.K. Dwivedi ,&nbsp;Pooja Lohia ,&nbsp;R.K. Yadav ,&nbsp;Upendra Kulshrestha ,&nbsp;Vipin Kumar ,&nbsp;Prabhu Paramasivam ,&nbsp;R. Bousbih ,&nbsp;M. Khalid Hossain","doi":"10.1016/j.sbsr.2025.100738","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a comparative analysis of two distinct nonlinear elliptical hollow-core photonic crystal fiber (PCF) based sensors designed for the detection of three gaseous analytes, namely CCl<sub>4</sub> (<em>n</em> = 1.461), SnCl<sub>4</sub> (<em>n</em> = 1.5086) and C<sub>10</sub>H<sub>16</sub> (<em>n</em> = 1.472). A comprehensive examination is conducted across a wide wavelength range (1.2 μm–2.6 μm). In order to enhance both the fabrication tolerance and sensing performance of the proposed sensors, investigations have been conducted on the diameter of circular and elliptical-shaped air holes, as well as the dimensions of struts and the core size. Silica works as background material for both the sensors. The sensing parameters including relative sensitivity, effective area, birefringence, and dispersion, have been obtained for two different sensors proposed for evaluation. The numerical investigation employs the finite element method based on Comsol Multiphysics. When comparing both sensors, sensor design-2 stands out with an impressive nonlinear coefficient value of 15.470 W<sup>−1</sup>Km<sup>−1</sup>, a higher relative sensitivity of 98.386 %, enhanced effective area of 1.134× 10<sup>−11</sup> m<sup>2</sup>, comparable effective refractive index of 1.496 and significant birefringence −4.701 × 10<sup>−5</sup>, along with low confinement loss for SnCl<sub>4</sub> followed by CCl<sub>4</sub> and C<sub>10</sub>H<sub>16</sub> at 1.2 μm operating wavelength, owing to its higher refractive index compared to sensor design-1 for same sensing analyte. The designed model holds potential applications in sensing, bio-sensing research, and related fields.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100738"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180425000042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comparative analysis of two distinct nonlinear elliptical hollow-core photonic crystal fiber (PCF) based sensors designed for the detection of three gaseous analytes, namely CCl4 (n = 1.461), SnCl4 (n = 1.5086) and C10H16 (n = 1.472). A comprehensive examination is conducted across a wide wavelength range (1.2 μm–2.6 μm). In order to enhance both the fabrication tolerance and sensing performance of the proposed sensors, investigations have been conducted on the diameter of circular and elliptical-shaped air holes, as well as the dimensions of struts and the core size. Silica works as background material for both the sensors. The sensing parameters including relative sensitivity, effective area, birefringence, and dispersion, have been obtained for two different sensors proposed for evaluation. The numerical investigation employs the finite element method based on Comsol Multiphysics. When comparing both sensors, sensor design-2 stands out with an impressive nonlinear coefficient value of 15.470 W−1Km−1, a higher relative sensitivity of 98.386 %, enhanced effective area of 1.134× 10−11 m2, comparable effective refractive index of 1.496 and significant birefringence −4.701 × 10−5, along with low confinement loss for SnCl4 followed by CCl4 and C10H16 at 1.2 μm operating wavelength, owing to its higher refractive index compared to sensor design-1 for same sensing analyte. The designed model holds potential applications in sensing, bio-sensing research, and related fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensing and Bio-Sensing Research
Sensing and Bio-Sensing Research Engineering-Electrical and Electronic Engineering
CiteScore
10.70
自引率
3.80%
发文量
68
审稿时长
87 days
期刊介绍: Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies. The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.
期刊最新文献
Yerba mate tea mediated synthesis of nanoscale zero valent iron particles and their application in detection of Pb ions in water Cost-effective Amperometric Immunosensor for cardiac troponin I as a step towards affordable point-of-care diagnosis of acute myocardial infarction Application of novel oligomeric Co(II) complexes of 4,4′-bipyridine and 1,10-phenanthroline modified glassy carbon electrode for differential pulse voltammetric determination of ciprofloxacin A label-free gold nanoparticles functionalized peptide dendrimer biosensor for visual detection of breakthrough infections in COVID-19 vaccinated patients Simplified optical monitoring systems for detecting leukocyte-derived hypochlorite ions using small amounts of whole blood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1