{"title":"Interplay among hormones, antioxidants, and redox signaling in abiotic stress responses","authors":"Camila Luiza Delaix , Andressa Tomiozzo , Guilherme Weber , Yugo Lima-Melo , Alexandre Nascimento de Vargas , Márcia Margis-Pinheiro , Thomaz Stumpf Trenz","doi":"10.1016/j.envexpbot.2024.106081","DOIUrl":null,"url":null,"abstract":"<div><div>Abiotic stresses are major limiting factors in plant development, delaying growth and reducing crop yield. These stressors induce the formation of reactive oxygen species (ROS), which can be harmful at high concentrations but also act as signaling molecules. Plants display robust antioxidative machinery to scavenge excess ROS and maintain nontoxic ROS levels. Plant hormones, specialized signaling molecules, are not only essential in plant growth and development, but also transducing stress signals, profoundly affecting the antioxidative machinery and triggering plant adaptive responses. In this context, respiratory burst oxidase homologous proteins are essential hubs that mediate phytohormone-induced ROS production, linking phytohormonal signals to important processes, such as stomatal closure. This review highlights the significant role of abscisic acid, jasmonic acid, salicylic acid, and brassinosteroids in enhancing antioxidative responses under abiotic stress conditions. Additionally, we emphasize the importance of redox post-translational modifications involved in hormone signaling.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"229 ","pages":"Article 106081"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224004398","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abiotic stresses are major limiting factors in plant development, delaying growth and reducing crop yield. These stressors induce the formation of reactive oxygen species (ROS), which can be harmful at high concentrations but also act as signaling molecules. Plants display robust antioxidative machinery to scavenge excess ROS and maintain nontoxic ROS levels. Plant hormones, specialized signaling molecules, are not only essential in plant growth and development, but also transducing stress signals, profoundly affecting the antioxidative machinery and triggering plant adaptive responses. In this context, respiratory burst oxidase homologous proteins are essential hubs that mediate phytohormone-induced ROS production, linking phytohormonal signals to important processes, such as stomatal closure. This review highlights the significant role of abscisic acid, jasmonic acid, salicylic acid, and brassinosteroids in enhancing antioxidative responses under abiotic stress conditions. Additionally, we emphasize the importance of redox post-translational modifications involved in hormone signaling.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.