Liquid crystal template-assisted electrodeposition of nanoporous nickel microspheres: A sensitive electrochemical sensing platform for electrocatalytic oxidation and quantitative determination of l-carnitine
R. Dehdari Vais , M. Negahdary , S.R. Rasouli Nasrabadi , A. Rahi , S.A. Dastgheib , H. Heli
{"title":"Liquid crystal template-assisted electrodeposition of nanoporous nickel microspheres: A sensitive electrochemical sensing platform for electrocatalytic oxidation and quantitative determination of l-carnitine","authors":"R. Dehdari Vais , M. Negahdary , S.R. Rasouli Nasrabadi , A. Rahi , S.A. Dastgheib , H. Heli","doi":"10.1016/j.sbsr.2025.100743","DOIUrl":null,"url":null,"abstract":"<div><div><span>l</span>-carnitine (LC) is a vital constituent of mammalian tissues, has a significant role in the function of different biological systems, and its determination is of great interest. Electrochemical sensing using nickelaceous nanostructured electrocatalysts offers potential interests and advantages. In the present study, nanoporous nickel microspheres (NNiMs) were electrodeposited and then utilized as an electrode modifier for the electrocatalytic oxidation and determination of LC. NNiMs were electrodeposited on a nickel substrate from a liquid crystal medium containing nickel (II) chloride, and Triton X-100 under a potentiostatic condition. The surface morphological characterization of the obtained nanoporous microspheres was followed by field emission scanning electron microscopy. NNiMs were transformed into the corresponding oxides by applying consecutive potential cycles in an alkaline medium, and the electron transfer coefficient and apparent charge transfer rate constant of the redox species present on the modified electrode surface were calculated as 0.59 and 0.54 s<sup>−1</sup>, respectively. Cyclic voltammetry, chronoamperometry, and steady-state polarization measurements were used for assessing the electrocatalytic oxidation mechanism and kinetics of LC on the NNiMs surface. Based on these measurements, an LC diffusion coefficient of 4.1 × 10<sup>−6</sup> cm<sup>2</sup> s<sup>−1</sup>, a catalytic rate constant of 4.0 × 10<sup>4</sup> cm<sup>3</sup> mol<sup>−1</sup> s<sup>−1</sup>, and an electron transfer coefficient of 0.41 were achieved. The proposed sensor was then employed as a sensitive amperometric sensor for determination of LC with a linear dynamic range of 25 to 217 μmol L<sup>−1</sup>, a calibration sensitivity of 67.85 mA L mol<sup>−1</sup>, and a detection limit of 3.2 μmol L<sup>−1</sup>. The designed sensing platform depicted a stable and reproducible response and insignificant interference from the common species found in the biological fluids and pharmaceutical formulations. Taking all these features together, the developed determination method can be satisfactorily exploited as a simple and quick tool for direct analysis of LC in pharmaceutical oral solutions and human serum samples.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100743"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180425000091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
l-carnitine (LC) is a vital constituent of mammalian tissues, has a significant role in the function of different biological systems, and its determination is of great interest. Electrochemical sensing using nickelaceous nanostructured electrocatalysts offers potential interests and advantages. In the present study, nanoporous nickel microspheres (NNiMs) were electrodeposited and then utilized as an electrode modifier for the electrocatalytic oxidation and determination of LC. NNiMs were electrodeposited on a nickel substrate from a liquid crystal medium containing nickel (II) chloride, and Triton X-100 under a potentiostatic condition. The surface morphological characterization of the obtained nanoporous microspheres was followed by field emission scanning electron microscopy. NNiMs were transformed into the corresponding oxides by applying consecutive potential cycles in an alkaline medium, and the electron transfer coefficient and apparent charge transfer rate constant of the redox species present on the modified electrode surface were calculated as 0.59 and 0.54 s−1, respectively. Cyclic voltammetry, chronoamperometry, and steady-state polarization measurements were used for assessing the electrocatalytic oxidation mechanism and kinetics of LC on the NNiMs surface. Based on these measurements, an LC diffusion coefficient of 4.1 × 10−6 cm2 s−1, a catalytic rate constant of 4.0 × 104 cm3 mol−1 s−1, and an electron transfer coefficient of 0.41 were achieved. The proposed sensor was then employed as a sensitive amperometric sensor for determination of LC with a linear dynamic range of 25 to 217 μmol L−1, a calibration sensitivity of 67.85 mA L mol−1, and a detection limit of 3.2 μmol L−1. The designed sensing platform depicted a stable and reproducible response and insignificant interference from the common species found in the biological fluids and pharmaceutical formulations. Taking all these features together, the developed determination method can be satisfactorily exploited as a simple and quick tool for direct analysis of LC in pharmaceutical oral solutions and human serum samples.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.