Influence of mechanical strength on gas migration through bentonite: Numerical analysis from laboratory to field scale

IF 3.3 2区 工程技术 Q3 ENERGY & FUELS Geomechanics for Energy and the Environment Pub Date : 2024-12-01 DOI:10.1016/j.gete.2024.100614
Jung-Tae Kim , Changsoo Lee , Minhyeong Lee , Jin-Seop Kim , E. Tamayo-Mas , J.F. Harrington
{"title":"Influence of mechanical strength on gas migration through bentonite: Numerical analysis from laboratory to field scale","authors":"Jung-Tae Kim ,&nbsp;Changsoo Lee ,&nbsp;Minhyeong Lee ,&nbsp;Jin-Seop Kim ,&nbsp;E. Tamayo-Mas ,&nbsp;J.F. Harrington","doi":"10.1016/j.gete.2024.100614","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the gas movement phenomenon within the deep geological repository is essential for assessing the disposal system’s long-term stability. The primary gas transport mechanism through the bentonite is dilatancy-controlled flow, which differs from gas flow in general porous media. This flow is characterized by gas movement through microcracks created under relatively high gas pressure conditions, and the intrinsic permeability, air-entry pressure, and mechanical strength of the medium change due to the generation and propagation of these microcracks. Therefore, dilatancy-controlled flow cannot be simulated using the classical two-phase flow modeling technique. This study constructed the H<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>MD (two-phase hydraulic-mechanical-damage) numerical model by combining a damage model to simulate material degradation and the resulting change in intrinsic permeability with a classical two-phase flow model. In addition, the numerical model was tested against a 1D laboratory gas injection test investing gas flow mechanisms in the buffer, and a sensitivity analysis was performed on tensile strength, a key factor in the damage model for gas movement phenomenon. In the validation study, the proposed model successfully simulated the key features observed in the test: rapid stress and pressure increase trends, changes in intrinsic permeability due to damage, and the resulting flow rate. In addition, the effect of heterogeneity on the strength characteristics of each material and interfaces between materials was analyzed through field-scale test simulations, and the applicability of the model to upscaling analysis was examined. The study of heterogeneity effects confirmed that incorporating the strength characteristics of interfaces accurately simulates the gas flow path observed in actual tests. However, the model overestimated the gas flow before the gas breakthrough and underestimated the evolution of the damaged area within the buffer. Therefore, additional research on relative permeability and mechanical constitutive models is needed to improve the reliability of the current model.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100614"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000819","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the gas movement phenomenon within the deep geological repository is essential for assessing the disposal system’s long-term stability. The primary gas transport mechanism through the bentonite is dilatancy-controlled flow, which differs from gas flow in general porous media. This flow is characterized by gas movement through microcracks created under relatively high gas pressure conditions, and the intrinsic permeability, air-entry pressure, and mechanical strength of the medium change due to the generation and propagation of these microcracks. Therefore, dilatancy-controlled flow cannot be simulated using the classical two-phase flow modeling technique. This study constructed the H2MD (two-phase hydraulic-mechanical-damage) numerical model by combining a damage model to simulate material degradation and the resulting change in intrinsic permeability with a classical two-phase flow model. In addition, the numerical model was tested against a 1D laboratory gas injection test investing gas flow mechanisms in the buffer, and a sensitivity analysis was performed on tensile strength, a key factor in the damage model for gas movement phenomenon. In the validation study, the proposed model successfully simulated the key features observed in the test: rapid stress and pressure increase trends, changes in intrinsic permeability due to damage, and the resulting flow rate. In addition, the effect of heterogeneity on the strength characteristics of each material and interfaces between materials was analyzed through field-scale test simulations, and the applicability of the model to upscaling analysis was examined. The study of heterogeneity effects confirmed that incorporating the strength characteristics of interfaces accurately simulates the gas flow path observed in actual tests. However, the model overestimated the gas flow before the gas breakthrough and underestimated the evolution of the damaged area within the buffer. Therefore, additional research on relative permeability and mechanical constitutive models is needed to improve the reliability of the current model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geomechanics for Energy and the Environment
Geomechanics for Energy and the Environment Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
11.80%
发文量
87
期刊介绍: The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources. The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.
期刊最新文献
Integrated evaluation of stiffness degradation by combining Resonant-Column, Cyclic Triaxial and Cyclic Simple Shear Tests: Application to Riotinto mine tailings Safety assessment for a geological disposal facility in domal salt: The Dutch case Numerical simulation of copper-contaminated sediment consolidation and remediation through vacuum electro-osmosis Thermo-hydro mechanical coupling in a discrete modelling: Large-scale 3D application to thermal hydrofracturing A comparative analysis of numerical approaches for the description of gas flow in clay-based repository systems: From a laboratory to a large-scale gas injection test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1