A new welding distortion analysis method considering inherent deformation-based tendon force estimation

IF 2.3 3区 工程技术 Q2 ENGINEERING, MARINE International Journal of Naval Architecture and Ocean Engineering Pub Date : 2025-01-01 DOI:10.1016/j.ijnaoe.2024.100640
Hyun-Duk Seo , Jae Min Lee
{"title":"A new welding distortion analysis method considering inherent deformation-based tendon force estimation","authors":"Hyun-Duk Seo ,&nbsp;Jae Min Lee","doi":"10.1016/j.ijnaoe.2024.100640","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a new analysis method for predicting welding distortions induced by welding heat during the assembly process in various engineering fields. In the proposed method, the tendon force contributing to longitudinal bending deformation is calculated based on the measured inherent deformations in the welding specimen. Additionally, welding distortions along the transverse and longitudinal directions are simultaneously estimated without undesired numerical errors by adopting orthotropic thermal coefficients. Through the proposed method, reliable numerical solutions can be obtained using only linear elastic analysis with the finite element procedure. Consequently, the proposed method can be easily applied to multi-pass welding problems without requiring additional treatments, as it relies on the inherent deformations for the analysis. The performance of the proposed method is verified through numerical and experimental investigations for fillet-welded structures.</div></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"17 ","pages":"Article 100640"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678224000591","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new analysis method for predicting welding distortions induced by welding heat during the assembly process in various engineering fields. In the proposed method, the tendon force contributing to longitudinal bending deformation is calculated based on the measured inherent deformations in the welding specimen. Additionally, welding distortions along the transverse and longitudinal directions are simultaneously estimated without undesired numerical errors by adopting orthotropic thermal coefficients. Through the proposed method, reliable numerical solutions can be obtained using only linear elastic analysis with the finite element procedure. Consequently, the proposed method can be easily applied to multi-pass welding problems without requiring additional treatments, as it relies on the inherent deformations for the analysis. The performance of the proposed method is verified through numerical and experimental investigations for fillet-welded structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.50%
发文量
62
审稿时长
12 months
期刊介绍: International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.
期刊最新文献
Adaptive neural network fault-tolerant sliding mode control for ship berthing with actuator faults and input saturation The extended modified Logvinovich model: Application to the water entry of two-dimensional wedges Experiment and modeling of submarine emergency rising motion using free-running model A new welding distortion analysis method considering inherent deformation-based tendon force estimation An optimization design method for submarine cabins based on intelligent algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1