Improving the in-plane bearing stiffness in folded beam diaphragm flexures

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2024-12-12 DOI:10.1016/j.mechmachtheory.2024.105883
Moeen Radgolchin , Shorya Awtar , Ruiyu Bai , Guimin Chen
{"title":"Improving the in-plane bearing stiffness in folded beam diaphragm flexures","authors":"Moeen Radgolchin ,&nbsp;Shorya Awtar ,&nbsp;Ruiyu Bai ,&nbsp;Guimin Chen","doi":"10.1016/j.mechmachtheory.2024.105883","DOIUrl":null,"url":null,"abstract":"<div><div>Diaphragm flexures are commonly used to generate precise out-of-plane motion while providing in-plane load bearing in various precision applications. The basic diaphragm flexure exhibits a parasitic rotation about the out-of-plane direction. While this rotational error motion can be eliminated by the use of folded beams in diaphragm flexures, the unsupported end of the folded beams leads to an elastokinematic drop in the in-plane stiffness with increasing out-of-plane displacement. In this paper, a novel sandwich design for folded beam diaphragm flexures is proposed that significantly improves this in-plane stiffness drop by mitigating the under-constraint of the unsupported ends of the folded beams. The superior performance of the sandwich design is demonstrated via non-linear Finite Element Analysis (FEA) and explained by several design insights derived from closed-form analysis. Six different diaphragm flexures including asymmetric simple beam, asymmetric folded beam, symmetric folded beam, and their sandwich versions, are investigated and categorized according to their out-of-plane stiffness, in-plane stiffness, and parasitic rotation performance. Several design guidelines are proposed to select the appropriate design based on the specific requirements of the diaphragm flexure's intended application.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"205 ","pages":"Article 105883"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24003100","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Diaphragm flexures are commonly used to generate precise out-of-plane motion while providing in-plane load bearing in various precision applications. The basic diaphragm flexure exhibits a parasitic rotation about the out-of-plane direction. While this rotational error motion can be eliminated by the use of folded beams in diaphragm flexures, the unsupported end of the folded beams leads to an elastokinematic drop in the in-plane stiffness with increasing out-of-plane displacement. In this paper, a novel sandwich design for folded beam diaphragm flexures is proposed that significantly improves this in-plane stiffness drop by mitigating the under-constraint of the unsupported ends of the folded beams. The superior performance of the sandwich design is demonstrated via non-linear Finite Element Analysis (FEA) and explained by several design insights derived from closed-form analysis. Six different diaphragm flexures including asymmetric simple beam, asymmetric folded beam, symmetric folded beam, and their sandwich versions, are investigated and categorized according to their out-of-plane stiffness, in-plane stiffness, and parasitic rotation performance. Several design guidelines are proposed to select the appropriate design based on the specific requirements of the diaphragm flexure's intended application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
Identification of Tool and Machine Settings for Hypoid Gear Based on Non-Uniform Discretization An analytical model for the drum-rope interaction in hoisting mechanisms and cable-driven systems Evaluation of robot kinematic performance under motion constraints in a teleoperated robotic ultrasound system A bilateral wrist robotic system with compliant actuation for rehabilitation training Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1