Decreasing R:FR ratio in a grow light spectrum increases inflorescence yield but decreases plant specialized metabolite concentrations in Cannabis sativa

IF 4.5 2区 生物学 Q2 ENVIRONMENTAL SCIENCES Environmental and Experimental Botany Pub Date : 2025-01-01 DOI:10.1016/j.envexpbot.2024.106059
Stiina Kotiranta , Aku Sarka , Titta Kotilainen , Pauliina Palonen
{"title":"Decreasing R:FR ratio in a grow light spectrum increases inflorescence yield but decreases plant specialized metabolite concentrations in Cannabis sativa","authors":"Stiina Kotiranta ,&nbsp;Aku Sarka ,&nbsp;Titta Kotilainen ,&nbsp;Pauliina Palonen","doi":"10.1016/j.envexpbot.2024.106059","DOIUrl":null,"url":null,"abstract":"<div><div>Cultivation of <em>Cannabis sativa</em> for recreational and pharmaceutical purposes has been increasing significantly in recent years due to legalization in many countries. Cultivation takes place regularly indoors under varying artificial lighting sources. There is a lack of scientific knowledge on the effect of light spectrum on the <em>C. sativa</em> morphology, yield, and quality, especially the cannabinoid and terpene concentrations in the female inflorescences in indoor environments. Furthermore, only a handful of the spectra studies conducted so far study or discuss the effect of far-red radiation, while the effect of other wavelengths, such as UV or blue, has gained more attention. This study had two aims: (1) to examine plant morphology and inflorescence yield under varying red to far-red ratio (R:FR) treatments with equal photon flux densities (380–780 nm), and (2) to examine the possible relationship of the cannabinoid and terpene concentrations with the spectrum’s R:FR ratio, Plant material was collected as cuttings from <em>C. sativa</em> ‘Finola’ mother plants and grown under 18 h photoperiod before transferring them under the light treatments for 49 days (550 μmol m<sup>−2</sup> s<sup>−1</sup>, 12 h/12 h dark/light). Light treatments were created with two types of LED fixtures, white spectrum (380–780 nm) and far-red (730 nm), which were used to create four R:FR ratio treatments; R:FR 3, 5, 9, and 12. Plant morphology was affected by the R:FR ratio; under the lowest R:FR (3) treatment plants were tallest, and the apical inflorescence dry weight decreased linearly with increasing R:FR ratio. The concentrations of many terpenes and cannabinoids including cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), and cannabigerolic acid (CBGA), increased with increasing R:FR ratio. In conclusion, spectra with different R:FR ratios can be used as a tool at different growth phases to modify the plant morphology, inflorescence yield, and cannabinoid and terpene concentrations.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"229 ","pages":"Article 106059"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224004179","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cultivation of Cannabis sativa for recreational and pharmaceutical purposes has been increasing significantly in recent years due to legalization in many countries. Cultivation takes place regularly indoors under varying artificial lighting sources. There is a lack of scientific knowledge on the effect of light spectrum on the C. sativa morphology, yield, and quality, especially the cannabinoid and terpene concentrations in the female inflorescences in indoor environments. Furthermore, only a handful of the spectra studies conducted so far study or discuss the effect of far-red radiation, while the effect of other wavelengths, such as UV or blue, has gained more attention. This study had two aims: (1) to examine plant morphology and inflorescence yield under varying red to far-red ratio (R:FR) treatments with equal photon flux densities (380–780 nm), and (2) to examine the possible relationship of the cannabinoid and terpene concentrations with the spectrum’s R:FR ratio, Plant material was collected as cuttings from C. sativa ‘Finola’ mother plants and grown under 18 h photoperiod before transferring them under the light treatments for 49 days (550 μmol m−2 s−1, 12 h/12 h dark/light). Light treatments were created with two types of LED fixtures, white spectrum (380–780 nm) and far-red (730 nm), which were used to create four R:FR ratio treatments; R:FR 3, 5, 9, and 12. Plant morphology was affected by the R:FR ratio; under the lowest R:FR (3) treatment plants were tallest, and the apical inflorescence dry weight decreased linearly with increasing R:FR ratio. The concentrations of many terpenes and cannabinoids including cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), and cannabigerolic acid (CBGA), increased with increasing R:FR ratio. In conclusion, spectra with different R:FR ratios can be used as a tool at different growth phases to modify the plant morphology, inflorescence yield, and cannabinoid and terpene concentrations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental and Experimental Botany
Environmental and Experimental Botany 环境科学-环境科学
CiteScore
9.30
自引率
5.30%
发文量
342
审稿时长
26 days
期刊介绍: Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment. In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief. The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB. The areas covered by the Journal include: (1) Responses of plants to heavy metals and pollutants (2) Plant/water interactions (salinity, drought, flooding) (3) Responses of plants to radiations ranging from UV-B to infrared (4) Plant/atmosphere relations (ozone, CO2 , temperature) (5) Global change impacts on plant ecophysiology (6) Biotic interactions involving environmental factors.
期刊最新文献
Plant resistance to the whitefly Bemisia tabaci is compromised in salt-stressed Capsicum Drought memory expression varies across ecologically contrasting forest tree species Knockout of OsBURP12 enhances salt tolerance in rice seedlings Beyond red and blue: Unveiling the hidden action of green wavelengths on plant physiology, metabolisms and gene regulation in horticultural crops High air temperature reduces plant specialized metabolite yield in medical cannabis, and has genotype-specific effects on inflorescence dry matter production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1