Acrylonitrile-styrene–acrylate@ silicone three layers core-shell nanostructure copolymer with excellent impact toughness and highness-strength balance

IF 4.5 3区 工程技术 Q1 CHEMISTRY, APPLIED Reactive & Functional Polymers Pub Date : 2025-01-21 DOI:10.1016/j.reactfunctpolym.2025.106168
Jin Huang, Jiajun Ma, Junxiao Yang
{"title":"Acrylonitrile-styrene–acrylate@ silicone three layers core-shell nanostructure copolymer with excellent impact toughness and highness-strength balance","authors":"Jin Huang,&nbsp;Jiajun Ma,&nbsp;Junxiao Yang","doi":"10.1016/j.reactfunctpolym.2025.106168","DOIUrl":null,"url":null,"abstract":"<div><div>Due to its excellent weather resistance, acrylonitrile-styrene-acrylate (ASA) resin is widely utilized. However, one critical challenge is its unsatisfactory impact property, which restricts its further application. Although various studies have been reported on improving the toughening effect of ASA resin, most of them reduce its strength and modulus. It is difficult to strike a balance between the improved toughening effect and the reduced strength and modulus. Herein, we designed a silicone rubber filled acrylate core to synthesize an acrylonitrile-styrene–acrylate@ silicone (Si-ASA) three-layer core-shell nanostructure copolymer via three-step emulsion polymerization. Introducing ductile silicone rubber into the interior of acrylate rubber microparticles can increase and refine the cavitation of the rubber layer upon impact. Meanwhile, the fibrillation of silicone cores can absorb impact energy and bridge cracks. SEM images demonstrated the formation of the three-layer nanostructure of Si-ASA. The mechanical property results showed that the prepared Si-ASA exhibits a significantly increased impact strength of approximately 19.5KJ/m<sup>2</sup>, which is nearly twice that of the commercial ASA. Considering the much higher impact property of Si-ASA, this slightly higher of modulus is significant. These indicate that the Si-ASA three-layer core-shell nanostructure copolymer, when applied to ASA resin helps in achieving rigid-tough balanced materials.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"209 ","pages":"Article 106168"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514825000203","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its excellent weather resistance, acrylonitrile-styrene-acrylate (ASA) resin is widely utilized. However, one critical challenge is its unsatisfactory impact property, which restricts its further application. Although various studies have been reported on improving the toughening effect of ASA resin, most of them reduce its strength and modulus. It is difficult to strike a balance between the improved toughening effect and the reduced strength and modulus. Herein, we designed a silicone rubber filled acrylate core to synthesize an acrylonitrile-styrene–acrylate@ silicone (Si-ASA) three-layer core-shell nanostructure copolymer via three-step emulsion polymerization. Introducing ductile silicone rubber into the interior of acrylate rubber microparticles can increase and refine the cavitation of the rubber layer upon impact. Meanwhile, the fibrillation of silicone cores can absorb impact energy and bridge cracks. SEM images demonstrated the formation of the three-layer nanostructure of Si-ASA. The mechanical property results showed that the prepared Si-ASA exhibits a significantly increased impact strength of approximately 19.5KJ/m2, which is nearly twice that of the commercial ASA. Considering the much higher impact property of Si-ASA, this slightly higher of modulus is significant. These indicate that the Si-ASA three-layer core-shell nanostructure copolymer, when applied to ASA resin helps in achieving rigid-tough balanced materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
sodium bicarbonate
阿拉丁
magnesium sulfate heptahydrate
阿拉丁
Hydroquinone
阿拉丁
potassium persulfate
阿拉丁
dodecylbenzene sulfonic acid
阿拉丁
allyl methacrylate
阿拉丁
Styrene
阿拉丁
butyl acrylate
阿拉丁
sodium dodecylbenzene sulfonate
阿拉丁
3-Methacryloxypropyltrimethoxysilane
来源期刊
Reactive & Functional Polymers
Reactive & Functional Polymers 工程技术-高分子科学
CiteScore
8.90
自引率
5.90%
发文量
259
审稿时长
27 days
期刊介绍: Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers. Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.
期刊最新文献
Modification of Al2O3 particles by T-shaped trialkoxylsilylethyl-terminated polydimethylsiloxane oligomers and their applications in thermal interface materials Synergistic effect of graphene oxide and glass fiber on mchanical and thermal properties of composites: Experimental and simulation investigations Enhancement of degradation resistance and biodegradability in natural rubber films through addition of gamma-irradiated mangosteen peel powder as bio-filler Fabricated adhesive hydrogel patches via regulating weak physical interactions through carboxylated cellulose nanofibers Interpenetrating polymer networks of poly (2-hydroxyethyl methacrylate co-itaconic acid) and chitosan as a controlled release matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1