{"title":"Dynamic modeling and effective vibration reduction of dual-link flexible manipulators with two-stage cascade PID and active torque actuation","authors":"Nitin Gupta, Barun Pratiher","doi":"10.1016/j.mechmachtheory.2024.105867","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible manipulators, praised for their adaptability, face challenges in controlling inherent vibrations. This study introduces an advanced control strategy that employs active torque actuation to effectively mitigate tip vibrations in a dual-link flexible manipulator, enhancing stability and performance. An accurate dynamic model, developed using extended Hamilton’s principle and the assumed mode method, addresses the system’s natural frequencies and mode shapes, transforming coupled nonlinear partial differential equations into simpler ordinary differential equations with defined boundary conditions. The robust control strategy employs a two-stage cascade Proportional–Integral–Derivative (PID) controller, managing rigid and flexible motions separately to ensure precise control and stability despite the manipulator’s complexities. Analytical and experimental results show that this control strategy significantly improves transient response by reducing settling time and overshooting, with minor changes to peak time. MATLAB simulations and experiments confirm the effective damping of flexible deflections, aligning closely with dynamic model predictions. These results underscore the effectiveness of the control strategy and dynamic model in achieving superior vibration suppression and improved transient response, thereby optimizing system performance.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"205 ","pages":"Article 105867"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002945","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible manipulators, praised for their adaptability, face challenges in controlling inherent vibrations. This study introduces an advanced control strategy that employs active torque actuation to effectively mitigate tip vibrations in a dual-link flexible manipulator, enhancing stability and performance. An accurate dynamic model, developed using extended Hamilton’s principle and the assumed mode method, addresses the system’s natural frequencies and mode shapes, transforming coupled nonlinear partial differential equations into simpler ordinary differential equations with defined boundary conditions. The robust control strategy employs a two-stage cascade Proportional–Integral–Derivative (PID) controller, managing rigid and flexible motions separately to ensure precise control and stability despite the manipulator’s complexities. Analytical and experimental results show that this control strategy significantly improves transient response by reducing settling time and overshooting, with minor changes to peak time. MATLAB simulations and experiments confirm the effective damping of flexible deflections, aligning closely with dynamic model predictions. These results underscore the effectiveness of the control strategy and dynamic model in achieving superior vibration suppression and improved transient response, thereby optimizing system performance.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry