Shibo Mu , Xingwei Sun , Zhixu Dong , Heran Yang , Yin Liu , Weifeng Zhang , Qingxiang Meng , Yaping Zhao
{"title":"Meshing theory of point-contact conical-envelope cylindrical worm-face worm gear drive","authors":"Shibo Mu , Xingwei Sun , Zhixu Dong , Heran Yang , Yin Liu , Weifeng Zhang , Qingxiang Meng , Yaping Zhao","doi":"10.1016/j.mechmachtheory.2024.105870","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes further developing mismatched modification technology in meshing theory via physics-informed neural networks (PINNs). Thus, a design approach that considers meshing performance and meshing theory is presented for the mismatched parameters. On this basis, an innovative point-contact face worm gear drive with symmetric benchmark points is developed and its meshing theory is systematically developed. This study addresses high-dimensional nonlinear equation systems in tooth contact analysis (TCA) via PINN technology to convert initial value problems in conventional iterative methods into physical boundary problems. A PINN technique driven by meshing theory and meshing performance is proposed, achieving a coordinated optimization design for multiple mismatched parameters. The accuracy and feasibility of the PINN technique are proven by comparing it with the traditional iterative method. Applying the established meshing theory, TCA and error sensitivity analysis are conducted for the drive. The numerical results demonstrate that the PINN model has excellent accuracy in solving high-dimensional nonlinear equation systems. The analysis of the meshing characteristics indicates outstanding performance and a reduced susceptibility to installation errors.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"205 ","pages":"Article 105870"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002970","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes further developing mismatched modification technology in meshing theory via physics-informed neural networks (PINNs). Thus, a design approach that considers meshing performance and meshing theory is presented for the mismatched parameters. On this basis, an innovative point-contact face worm gear drive with symmetric benchmark points is developed and its meshing theory is systematically developed. This study addresses high-dimensional nonlinear equation systems in tooth contact analysis (TCA) via PINN technology to convert initial value problems in conventional iterative methods into physical boundary problems. A PINN technique driven by meshing theory and meshing performance is proposed, achieving a coordinated optimization design for multiple mismatched parameters. The accuracy and feasibility of the PINN technique are proven by comparing it with the traditional iterative method. Applying the established meshing theory, TCA and error sensitivity analysis are conducted for the drive. The numerical results demonstrate that the PINN model has excellent accuracy in solving high-dimensional nonlinear equation systems. The analysis of the meshing characteristics indicates outstanding performance and a reduced susceptibility to installation errors.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry