Ruiyu Bai , Nan Yang , Zhiwei Qiu , Shane Johnson , Ke Wu , Bo Li , Guimin Chen
{"title":"Achieving high-quality and large-stroke constant torque by axial force release","authors":"Ruiyu Bai , Nan Yang , Zhiwei Qiu , Shane Johnson , Ke Wu , Bo Li , Guimin Chen","doi":"10.1016/j.mechmachtheory.2024.105869","DOIUrl":null,"url":null,"abstract":"<div><div>Compliant constant-torque mechanisms (CCTMs) maintain constant-torque without the need for complex closed-loop feedback systems, broadening their applications in rehabilitation devices, surgical tools, and cooperative robotic arms. However, CCTMs present considerable design challenges due to the pronounced nonlinearities that arise due to large deflections and multi-axial loadings. Traditional CCTM design strategies focus on managing post-buckling phenomena, often leading to increased stresses and an imbalance in positive and negative stiffness, compromising torque consistency and stroke capacity. This study introduces a novel CCTM that effectively decouples the multi-axial loadings and releases axial forces, isolating beam bending forces. This decoupling is achieved by incorporating a parallel-guided compliant mechanism at the fixed end of the beam, which reduces stress and enhances torque stability throughout the operational range. Through the partical swarm optimization of geometric design parameters using the chained beam constraint model, this research has produced a CCTM capable of maintaining torque fluctuations below 0.39% over a rotational range of 18° to 68°. Experimental validations confirm the design’s superiority in providing an extended constant torque stroke and improved consistency, distinguishing it from conventional straight-beam CCTMs.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"205 ","pages":"Article 105869"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002969","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Compliant constant-torque mechanisms (CCTMs) maintain constant-torque without the need for complex closed-loop feedback systems, broadening their applications in rehabilitation devices, surgical tools, and cooperative robotic arms. However, CCTMs present considerable design challenges due to the pronounced nonlinearities that arise due to large deflections and multi-axial loadings. Traditional CCTM design strategies focus on managing post-buckling phenomena, often leading to increased stresses and an imbalance in positive and negative stiffness, compromising torque consistency and stroke capacity. This study introduces a novel CCTM that effectively decouples the multi-axial loadings and releases axial forces, isolating beam bending forces. This decoupling is achieved by incorporating a parallel-guided compliant mechanism at the fixed end of the beam, which reduces stress and enhances torque stability throughout the operational range. Through the partical swarm optimization of geometric design parameters using the chained beam constraint model, this research has produced a CCTM capable of maintaining torque fluctuations below 0.39% over a rotational range of 18° to 68°. Experimental validations confirm the design’s superiority in providing an extended constant torque stroke and improved consistency, distinguishing it from conventional straight-beam CCTMs.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry