Horizon-stability control for wheel-legged robot driving over unknow, rough terrain

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2024-12-14 DOI:10.1016/j.mechmachtheory.2024.105887
Kang Xu , Shoukun Wang , Lei Shi , Jianyong Li , Binkai Yue
{"title":"Horizon-stability control for wheel-legged robot driving over unknow, rough terrain","authors":"Kang Xu ,&nbsp;Shoukun Wang ,&nbsp;Lei Shi ,&nbsp;Jianyong Li ,&nbsp;Binkai Yue","doi":"10.1016/j.mechmachtheory.2024.105887","DOIUrl":null,"url":null,"abstract":"<div><div>Maintaining the horizontal and stable posture of a robot while traversing unfamiliar, rugged terrain poses a significant challenge in various applications such as wounded rescue and disability assistance. This paper introduces a horizontal-stability control framework designed for a wheel-legged hybrid robot to ensure the stability and horizontal orientation of the robot's trunk when encountering unknown and rough terrain conditions. This framework primarily comprises a compliance controller and a terrain adaptation controller. The compliance controller is geared towards establishing compliant interactions with the terrain and tracking the desired ground reaction forces. This is achieved through the implementation of a novel adaptive impedance control method to uphold torque equilibrium in the robot's trunk. To conform to the variable terrain, the terrain adaptation controller is employed. This controller decouples posture adjustments and regulates control outputs to adapt to terrains featuring unknown topographical changes. A series of numerical simulations and experimental trials are carried out to validate the proposed methods on a wheel-legged hybrid robot, followed by comparative evaluations to assess its performance.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"205 ","pages":"Article 105887"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24003148","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining the horizontal and stable posture of a robot while traversing unfamiliar, rugged terrain poses a significant challenge in various applications such as wounded rescue and disability assistance. This paper introduces a horizontal-stability control framework designed for a wheel-legged hybrid robot to ensure the stability and horizontal orientation of the robot's trunk when encountering unknown and rough terrain conditions. This framework primarily comprises a compliance controller and a terrain adaptation controller. The compliance controller is geared towards establishing compliant interactions with the terrain and tracking the desired ground reaction forces. This is achieved through the implementation of a novel adaptive impedance control method to uphold torque equilibrium in the robot's trunk. To conform to the variable terrain, the terrain adaptation controller is employed. This controller decouples posture adjustments and regulates control outputs to adapt to terrains featuring unknown topographical changes. A series of numerical simulations and experimental trials are carried out to validate the proposed methods on a wheel-legged hybrid robot, followed by comparative evaluations to assess its performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在未知崎岖地形上行驶的轮腿机器人的水平稳定性控制
在穿越不熟悉的崎岖地形时,保持机器人的水平和稳定姿态在各种应用中提出了重大挑战,例如伤员救援和残疾人援助。本文介绍了一种为轮腿混合动力机器人设计的水平稳定性控制框架,以保证机器人在遇到未知和崎岖地形时躯干的稳定性和水平方向。该框架主要包括一个顺应控制器和一个地形适应控制器。顺应控制器是面向建立顺应的相互作用与地形和跟踪所需的地面反作用力。这是通过实施一种新的自适应阻抗控制方法来维持机器人躯干的扭矩平衡来实现的。为了适应多变的地形,采用了地形自适应控制器。该控制器解耦姿态调整并调节控制输出以适应具有未知地形变化的地形。通过一系列数值模拟和实验验证了所提方法在轮腿混合动力机器人上的有效性,并对其性能进行了对比评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
Editorial Board Design and analysis of modular array deployable antenna mechanism based on one Waterbomb-Ori and four Miura-Ori basic unit mechanism Load-based iterative modification design method for face gear pairs The effect of external load on multi-point contact transitions of three-point angular contact ball bearing Nonlinearity separation and static-dynamic synthesis: A rapid and accurate algorithm for gear dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1