A New Integrated Approach for Evaluating Sustainable Development in the Electric Vehicle Sector

IF 6.7 2区 管理学 Q1 MANAGEMENT Omega-international Journal of Management Science Pub Date : 2024-11-28 DOI:10.1016/j.omega.2024.103247
Wen-Min Lu , Chien-Heng Chou , Irene Wei Kiong Ting , Shang-Ming Liu
{"title":"A New Integrated Approach for Evaluating Sustainable Development in the Electric Vehicle Sector","authors":"Wen-Min Lu ,&nbsp;Chien-Heng Chou ,&nbsp;Irene Wei Kiong Ting ,&nbsp;Shang-Ming Liu","doi":"10.1016/j.omega.2024.103247","DOIUrl":null,"url":null,"abstract":"<div><div>This study develops an innovative value creation process for the electric vehicle (EV) industry. First, this study conducts data envelopment analysis to measure the innovation, operation, and market efficiency performance of the EV industry. Second, this study conducts bootstrapped truncated regression to explore the impact of environmental, social, and governance (ESG) factors on the performance of the EV industry. Third, this study uses the classification &amp; regression tree (CART), random forest, and eXtreme gradient boosting (XGBoost) algorithms to assist managers in identifying the key predictive variables for further classification and prediction. Results reveal significant differences in innovation performance across five industry sectors, among which the charging pile system sector exhibits the highest average value, and the battery system sector exhibits the lowest average value. The truncated regression analysis shows that innovation performance in Taiwan's EV industry is significantly influenced by energy management, data security, employee information statistics, and control over equity and board seats. Corporate governance transparency positively impacts operational performance, while energy and water management enhance market performance, with product quality and safety having a negative effect on market performance. This study identifies the relative importance of the classification attribute variables based on the classification rules of the target attributes by conducting further analysis with the CART decision model and constructs an optimal prediction model.</div></div>","PeriodicalId":19529,"journal":{"name":"Omega-international Journal of Management Science","volume":"133 ","pages":"Article 103247"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Omega-international Journal of Management Science","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305048324002111","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops an innovative value creation process for the electric vehicle (EV) industry. First, this study conducts data envelopment analysis to measure the innovation, operation, and market efficiency performance of the EV industry. Second, this study conducts bootstrapped truncated regression to explore the impact of environmental, social, and governance (ESG) factors on the performance of the EV industry. Third, this study uses the classification & regression tree (CART), random forest, and eXtreme gradient boosting (XGBoost) algorithms to assist managers in identifying the key predictive variables for further classification and prediction. Results reveal significant differences in innovation performance across five industry sectors, among which the charging pile system sector exhibits the highest average value, and the battery system sector exhibits the lowest average value. The truncated regression analysis shows that innovation performance in Taiwan's EV industry is significantly influenced by energy management, data security, employee information statistics, and control over equity and board seats. Corporate governance transparency positively impacts operational performance, while energy and water management enhance market performance, with product quality and safety having a negative effect on market performance. This study identifies the relative importance of the classification attribute variables based on the classification rules of the target attributes by conducting further analysis with the CART decision model and constructs an optimal prediction model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Omega-international Journal of Management Science
Omega-international Journal of Management Science 管理科学-运筹学与管理科学
CiteScore
13.80
自引率
11.60%
发文量
130
审稿时长
56 days
期刊介绍: Omega reports on developments in management, including the latest research results and applications. Original contributions and review articles describe the state of the art in specific fields or functions of management, while there are shorter critical assessments of particular management techniques. Other features of the journal are the "Memoranda" section for short communications and "Feedback", a correspondence column. Omega is both stimulating reading and an important source for practising managers, specialists in management services, operational research workers and management scientists, management consultants, academics, students and research personnel throughout the world. The material published is of high quality and relevance, written in a manner which makes it accessible to all of this wide-ranging readership. Preference will be given to papers with implications to the practice of management. Submissions of purely theoretical papers are discouraged. The review of material for publication in the journal reflects this aim.
期刊最新文献
Deployment and pricing strategies for different generations of battery swap stations Managing equitable contagious disease testing: A mathematical model for resource optimization Optimal sizing and location of energy storage systems for transmission grids connected to wind farms Supply chain network viability: Managing disruption risk via dynamic data and interaction models Enhanced efficiency assessment in manufacturing: Leveraging machine learning for improved performance analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1