{"title":"Modeling of lithium ion transport at the LixMn2O4/LiF interface","authors":"P.M. Chekushkin , V.A. Nikitina , S.A. Kislenko","doi":"10.1016/j.ssi.2024.116766","DOIUrl":null,"url":null,"abstract":"<div><div>LiF-rich cathode-electrolyte interface (CEI) is of great interest for the development of high-performance Li-ion batteries. However, understanding ion transport through such interface is far from complete, which hinders further improvement of battery performance. To address this issue, we investigated lithium ion transport through LiF layer on LiMn<sub>2</sub>O<sub>4</sub> cathode using density functional theory (DFT). For the vacancy diffusion mechanism, the migration barriers of lithium ion at the LiMn<sub>2</sub>O<sub>4</sub>/LiF interface were calculated. It was found that the barriers in LiF do not increase compared to the bulk when approaching the cathode surface. Using the double layer model developed for a solid-solid electrochemical interface and based on the Poisson–Fermi–Dirac equation, the concentration distributions of dominant charge defects at the Li<sub><em>x</em></sub>Mn<sub>2</sub>O<sub>4</sub>/LiF interface was obtained for the composition range 0 ≤ <em>x</em> ≤ 1. Our results indicate an extremely low concentration of lithium vacancies in LiF near the cathode surface, making lithium intercalation hardly possible through the perfect single-crystal LiF which should result in poor rate performance. This suggests that the polycrystalline structure of LiF-rich CEI with multiple grain boundaries and inorganic components, as well as the presence of diffusion-enhancing impurities, are critical to ensure rapid ion transport.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"420 ","pages":"Article 116766"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727382400314X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
LiF-rich cathode-electrolyte interface (CEI) is of great interest for the development of high-performance Li-ion batteries. However, understanding ion transport through such interface is far from complete, which hinders further improvement of battery performance. To address this issue, we investigated lithium ion transport through LiF layer on LiMn2O4 cathode using density functional theory (DFT). For the vacancy diffusion mechanism, the migration barriers of lithium ion at the LiMn2O4/LiF interface were calculated. It was found that the barriers in LiF do not increase compared to the bulk when approaching the cathode surface. Using the double layer model developed for a solid-solid electrochemical interface and based on the Poisson–Fermi–Dirac equation, the concentration distributions of dominant charge defects at the LixMn2O4/LiF interface was obtained for the composition range 0 ≤ x ≤ 1. Our results indicate an extremely low concentration of lithium vacancies in LiF near the cathode surface, making lithium intercalation hardly possible through the perfect single-crystal LiF which should result in poor rate performance. This suggests that the polycrystalline structure of LiF-rich CEI with multiple grain boundaries and inorganic components, as well as the presence of diffusion-enhancing impurities, are critical to ensure rapid ion transport.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.