{"title":"Modelling of snow cover area in relation with climatic variability over the Sind basin of Kashmir Himalayas (2002–2022)","authors":"Suhail Ahmad Dar , Md. Omar Sarif","doi":"10.1016/j.pce.2024.103843","DOIUrl":null,"url":null,"abstract":"<div><div>The Snow Cover Area (SCA) of the Kashmir Himalayas is vital for environmental, hydrological, and socio-economic stability, influencing water management, agriculture, hydroelectric power, biodiversity, and tourism. This study evaluates the monthly, seasonal, and annual SCA of the Sind basin (2002–2022) using MODIS Terra (MOD10A2) data and NASA POWER PROJECT climate data, employing Mann-Kendall Trend Analysis to examine climatic sensitivities. The average annual SCA is 57.94% (895.75 km<sup>2</sup>), with a statistically insignificant increase of 0.16% per year. Seasonal SCA averages are 86.12% in winter, 70.72% in spring, 24.15% in summer, and 49.13% in autumn. Significant trends include a winter increase of 0.37% per year and a spring decline of −0.28% per year. Mann-Kendall Trend Analysis results indicated that Annual precipitation shows a statistically significant rise (Sen's slope: +25.61 mm/year). While temperature negatively correlates with annual SCA (≤ −0.77 in all years during 2002-2022), highlighting rising temperatures' detrimental effects on snow retention. A positive correlation of SCA with precipitation indicates (≥0.69 in all years during 2002-2022) that increased precipitation could partially offset snow cover loss. These findings underscore snow cover's sensitivity to climate variability and the critical need for adaptive management strategies. With snow resources essential for water security and ecosystem stability, the study provides valuable insights for regional climate adaptation and policy development, emphasizing the urgency of addressing climate change impacts on the fragile Himalayan environment.</div></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"138 ","pages":"Article 103843"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706524003012","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Snow Cover Area (SCA) of the Kashmir Himalayas is vital for environmental, hydrological, and socio-economic stability, influencing water management, agriculture, hydroelectric power, biodiversity, and tourism. This study evaluates the monthly, seasonal, and annual SCA of the Sind basin (2002–2022) using MODIS Terra (MOD10A2) data and NASA POWER PROJECT climate data, employing Mann-Kendall Trend Analysis to examine climatic sensitivities. The average annual SCA is 57.94% (895.75 km2), with a statistically insignificant increase of 0.16% per year. Seasonal SCA averages are 86.12% in winter, 70.72% in spring, 24.15% in summer, and 49.13% in autumn. Significant trends include a winter increase of 0.37% per year and a spring decline of −0.28% per year. Mann-Kendall Trend Analysis results indicated that Annual precipitation shows a statistically significant rise (Sen's slope: +25.61 mm/year). While temperature negatively correlates with annual SCA (≤ −0.77 in all years during 2002-2022), highlighting rising temperatures' detrimental effects on snow retention. A positive correlation of SCA with precipitation indicates (≥0.69 in all years during 2002-2022) that increased precipitation could partially offset snow cover loss. These findings underscore snow cover's sensitivity to climate variability and the critical need for adaptive management strategies. With snow resources essential for water security and ecosystem stability, the study provides valuable insights for regional climate adaptation and policy development, emphasizing the urgency of addressing climate change impacts on the fragile Himalayan environment.
期刊介绍:
Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001.
Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers.
The journal covers the following subject areas:
-Solid Earth and Geodesy:
(geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy).
-Hydrology, Oceans and Atmosphere:
(hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology).
-Solar-Terrestrial and Planetary Science:
(solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).