{"title":"Assessing the impact of land surface temperature on off-seasonal precipitation in Surat city at the regional level","authors":"Rachana Patil, Meenal Surawar","doi":"10.1016/j.pce.2024.103844","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of advancing urbanization, cities grapple with escalating challenges such as heightened and unpredictable occurrences of heatwaves and increased precipitation, resulting in recurrent issues like urban heat islands, waterlogging, water pollution, and floods. Particularly in densely populated countries like India, this has become a pressing concern due to a surge in mortality and morbidity rates linked to the amplified frequency of heat and off-season precipitation events. Given that the impacts of rising temperatures and precipitation exhibit a regional character, a comprehensive analysis at the urban scale is impractical. Consequently, this research focuses on a 75 km buffer surrounding Surat city. The study delves into the spatial patterns and influences of land surface temperature, wind speed, surface pressure, and the Normalized Difference Vegetative Index on off season precipitation across the decades from 1991 to 2021, considering both summer and winter seasons to capture the unpredictable nature of the events. Additionally, the research examines correlations among these parameters and delineation of vulnerable areas to heightened off-season precipitation events. In winter, the effect of LST on precipitation is localized, resulting in a positive correlation. In contrast, during summer, the influence of LST on precipitation is not localized, leading to a negative correlation. These findings provide valuable insights for planners, enabling the formulation of regionally tailored policies that address vulnerabilities beyond urban boundaries.</div></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"138 ","pages":"Article 103844"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706524003024","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of advancing urbanization, cities grapple with escalating challenges such as heightened and unpredictable occurrences of heatwaves and increased precipitation, resulting in recurrent issues like urban heat islands, waterlogging, water pollution, and floods. Particularly in densely populated countries like India, this has become a pressing concern due to a surge in mortality and morbidity rates linked to the amplified frequency of heat and off-season precipitation events. Given that the impacts of rising temperatures and precipitation exhibit a regional character, a comprehensive analysis at the urban scale is impractical. Consequently, this research focuses on a 75 km buffer surrounding Surat city. The study delves into the spatial patterns and influences of land surface temperature, wind speed, surface pressure, and the Normalized Difference Vegetative Index on off season precipitation across the decades from 1991 to 2021, considering both summer and winter seasons to capture the unpredictable nature of the events. Additionally, the research examines correlations among these parameters and delineation of vulnerable areas to heightened off-season precipitation events. In winter, the effect of LST on precipitation is localized, resulting in a positive correlation. In contrast, during summer, the influence of LST on precipitation is not localized, leading to a negative correlation. These findings provide valuable insights for planners, enabling the formulation of regionally tailored policies that address vulnerabilities beyond urban boundaries.
期刊介绍:
Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001.
Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers.
The journal covers the following subject areas:
-Solid Earth and Geodesy:
(geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy).
-Hydrology, Oceans and Atmosphere:
(hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology).
-Solar-Terrestrial and Planetary Science:
(solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).