{"title":"Multifunctional light field modulations of composite- phase-based diatomic metasurfaces","authors":"Yuhan Ge , Zexu Liu , Xueyao Song , Jicheng Wang","doi":"10.1016/j.photonics.2025.101353","DOIUrl":null,"url":null,"abstract":"<div><div>The all-dielectric phase metasurface due to their low-loss characteristics can be used for efficient wavefront control in the optical visible range. In this paper, we construct and design an improved diatomic structure metasurface by using the joint regulation of geometric phase and propagation phase. Compared with single atomic structures, we introduce new degrees of freedom to flexibly and effectively control the phase and amplitude of the optical wavefront. We can joint geometric phase or propagation phase to arrange two kinds of supramolecular structures to sophisticatedly realize multifunctional modulations of on/off imaging distributions in the near field and different image displays in the far field. We believe that our research results can provide reference for multifunctional optical surfaces, dynamic optical control and optical information encryption.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"63 ","pages":"Article 101353"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000033","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The all-dielectric phase metasurface due to their low-loss characteristics can be used for efficient wavefront control in the optical visible range. In this paper, we construct and design an improved diatomic structure metasurface by using the joint regulation of geometric phase and propagation phase. Compared with single atomic structures, we introduce new degrees of freedom to flexibly and effectively control the phase and amplitude of the optical wavefront. We can joint geometric phase or propagation phase to arrange two kinds of supramolecular structures to sophisticatedly realize multifunctional modulations of on/off imaging distributions in the near field and different image displays in the far field. We believe that our research results can provide reference for multifunctional optical surfaces, dynamic optical control and optical information encryption.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.